全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Federated Learning for Treatment Response Prediction in Bipolar Disorder: A Simulation-Based Institutional Study

DOI: 10.4236/oalib.1113954, PP. 1-12

Subject Areas: Psychiatry & Psychology, Artificial Intelligence

Keywords: Federated Learning, Bipolar Disorder, Treatment Response Prediction, Neural Networks, Healthcare Privacy, Feature Importance, Synthetic Data

Full-Text   Cite this paper   Add to My Lib

Abstract

Bipolar disorder is a complex psychiatric condition characterized by high variability in treatment response, posing a major challenge for clinicians striving to personalize care. Traditional machine learning models often require centralized data access, which is typically restricted in healthcare settings due to privacy regulations and institutional barriers. To address this, we propose a Federated Learning (FL) framework that enables collaborative model training across multiple institutions without the need to share sensitive patient-level data. In this study, we generated synthetic datasets representing five distinct hospitals, each comprising 1000 virtual bipolar disorder patients. These datasets included a range of features encompassing 
demographic characteristics (e.g., age, gender), clinical history (e.g., illness duration, episode counts), and comorbid conditions. A fully connected neural network was trained using a federated approach over 15 communication rounds. Each institution performed local training, followed by weight averaging to update a shared global model. Our global model achieved an overall test accuracy of 73.0% and an area under the receiver operating characteristic curve (AUC) of 0.84, demonstrating robust performance across diverse simulated institutional settings. Performance improved steadily over training rounds, with the highest-performing site reaching 84.5% accuracy. Permutation-based feature importance analysis revealed that illness duration and baseline mood were the most predictive features of treatment response. These results support the feasibility of federated learning for psychiatric prediction tasks, offering a promising path toward building generalizable, privacy-preserving models in real-world healthcare environments. Future work will extend this framework to real electronic health records and explore fairness-aware training to address institutional bias and population heterogeneity.


Cite this paper

Foysal, A. A. and Filippis, R. D. (2025). Federated Learning for Treatment Response Prediction in Bipolar Disorder: A Simulation-Based Institutional Study. Open Access Library Journal, 12, e13954. doi: http://dx.doi.org/10.4236/oalib.1113954.

References

[1]  McIntyre, R.S., Berk, M., Brietzke, E., Goldstein, B.I., López-Jaramillo, C., Kessing, L.V., et al. (2020) Bipolar Disorders. The Lancet, 396, 1841-1856. https://doi.org/10.1016/s0140-6736(20)31544-0
[2]  Vieta, E., Berk, M., Schulze, T.G., Carvalho, A.F., Suppes, T., Calabrese, J.R., et al. (2018) Bipolar Disorders. Nature Reviews Disease Primers, 4, Article No. 18008. https://doi.org/10.1038/nrdp.2018.8
[3]  Grande, I., Berk, M., Birmaher, B. and Vieta, E. (2016) Bipolar Disorder. The Lancet, 387, 1561-1572. https://doi.org/10.1016/s0140-6736(15)00241-x
[4]  Goes, F.S. (2023) Di-agnosis and Management of Bipolar Disorders. BMJ, 381, e073591. https://doi.org/10.1136/bmj-2022-073591
[5]  Müller-Oerlinghausen, B., Berghöfer, A. and Bauer, M. (2002) Bipolar Disorder. The Lancet, 359, 241-247. https://doi.org/10.1016/s0140-6736(02)07450-0
[6]  Eichler, H., Abadie, E., Breckenridge, A., Flamion, B., Gustafsson, L.L., Leufkens, H., et al. (2011) Bridging the Efficacy-Effectiveness Gap: A Regulator’s Perspective on Addressing Variability of Drug Response. Nature Reviews Drug Discovery, 10, 495-506. https://doi.org/10.1038/nrd3501
[7]  Gallagher, R.M. (1999) Treatment Planning in Pain Medicine: Integrating Medical, Physical, and Be-havioral Therapies. Medical Clinics of North America, 83, 823-849. https://doi.org/10.1016/s0025-7125(05)70136-x
[8]  Leahy, R.L., Holland, S.J. and McGinn, L.K. (2011) Treatment Plans and Interventions for Depression and Anxiety Disorders. Guilford Press.
[9]  Post, R.M., Denicoff, K.D., Frye, M.A., Dunn, R.T., Leverich, G.S., Osuch, E., et al. (1998) A History of the Use of Anticonvulsants as Mood Stabilizers in the Last Two Decades of the 20th Cen-tury. Neuropsychobiology, 38, 152-166. https://doi.org/10.1159/000026532
[10]  Nayak, R., Rosh, I., Kustanovich, I. and Stern, S. (2021) Mood Stabilizers in Psychiatric Disorders and Mechanisms Learnt from in Vitro Model Systems. International Journal of Molecular Sciences, 22, Article 9315. https://doi.org/10.3390/ijms22179315
[11]  Calabrese, J.R., Fatemi, S.H., Kujawa, M. and Woyshville, M.J. (1996) Predictors of Response to Mood Stabilizers. Journal of Clinical Psychopharmacology, 16, 24S-31S. https://doi.org/10.1097/00004714-199604001-00004
[12]  Bzdok, D. and Meyer-Lindenberg, A. (2018) Machine Learning for Precision Psychiatry: Op-portunities and Challenges. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3, 223-230. https://doi.org/10.1016/j.bpsc.2017.11.007
[13]  Manchia, M., Pisanu, C., Squassina, A. and Carpiniello, B. (2020) Challenges and Future Prospects of Precision Medicine in Psychiatry. Pharmacogenomics and Personalized Medi-cine, 13, 127-140. https://doi.org/10.2147/pgpm.s198225
[14]  van Dellen, E. (2024) Precision Psychiatry: Predicting Predictability. Psychological Medi-cine, 54, 1500-1509. https://doi.org/10.1017/s0033291724000370
[15]  Tai, A.M.Y., Albuquerque, A., Carmona, N.E., Subramanieapillai, M., Cha, D.S., Sheko, M., et al. (2019) Machine Learning and Big Data: Implications for Disease Modeling and Therapeutic Discovery in Psychiatry. Artificial Intelligence in Medicine, 99, Article 101704. https://doi.org/10.1016/j.artmed.2019.101704
[16]  Dinov, I.D. (2016) Methodological Challenges and Analytic Opportunities for Modeling and Interpreting Big Healthcare Data. GigaScience, 5, 2-15. https://doi.org/10.1186/s13742-016-0117-6
[17]  Miotto, R., Wang, F., Wang, S., Jiang, X. and Dudley, J.T. (2017) Deep Learning for Healthcare: Review, Op-portunities and Challenges. Briefings in Bioinformatics, 19, 1236-1246. https://doi.org/10.1093/bib/bbx044
[18]  Ngiam, K.Y. and Khor, I.W. (2019) Big Data and Machine Learning Algorithms for Health-Care Delivery. The Lancet Oncology, 20, e262-e273. https://doi.org/10.1016/s1470-2045(19)30149-4
[19]  Ettaloui, N., Arezki, S. and Gadi, T. (2023) An Overview of Blockchain-Based Electronic Health Records and Compliance with GDPR and HIPAA. Data and Metadata, 2, 166. https://doi.org/10.56294/dm2023166
[20]  Mello, M.M., Adler‐Milstein, J., Ding, K.L. and Savage, L. (2018) Legal Barriers to the Growth of Health Infor-mation Exchange—Boulders or Pebbles? The Milbank Quarterly, 96, 110-143. https://doi.org/10.1111/1468-0009.12313
[21]  Gonçalves-Ferreira, D., Sousa, M., Bacelar-Silva, G.M., Frade, S., Antunes, L.F., Beale, T., et al. (2019) OpenEHR and General Data Protection Regulation: Evaluation of Principles and Requirements. JMIR Medical Informatics, 7, e9845. https://doi.org/10.2196/medinform.9845
[22]  Herath, H.M.S.S., Herath, H.M.K.K.M.B., Madhusanka, B.G.D.A. and Guruge, L.G.P.K. (2024) Data Protec-tion Challenges in the Processing of Sensitive Data. In: Hewage, C., Yasakethu, L. and Jayakody, D.N.K., Eds., Data Protection, Springer, 155-179. https://doi.org/10.1007/978-3-031-76473-8_8
[23]  Richter, M., Emden, D., Leenings, R., Winter, N.R., Mikola-jczyk, R., Massag, J., et al. (2025) Generaliza-bility of Clinical Prediction Models in Mental Health. Molecular Psychiatry, 30, 3632-3639.
[24]  Meehan, A.J., Lewis, S.J., Fazel, S., Fusar-Poli, P., Steyerberg, E.W., Stahl, D., et al. (2022) Clinical Prediction Models in Psychiatry: A System-atic Review of Two Decades of Progress and Challenges. Molecular Psychiatry, 27, 2700-2708. https://doi.org/10.1038/s41380-022-01528-4
[25]  Cearns, M., Hahn, T. and Baune, B.T. (2019) Recommendations and Future Directions for Supervised Machine Learning in Psychiatry. Translational Psychiatry, 9, Ar-ticle No. 271. https://doi.org/10.1038/s41398-019-0607-2
[26]  Ebrahimi, M., Sahay, R., Hosseinalipour, S. and Akram, B. (2025) The Transition from Centralized Machine Learning to Federated Learning for Mental Health in Edu-cation: A Survey of Current Methods and Future Directions. arXiv:2501.11714.
[27]  Rauniyar, A., Hagos, D.H., Jha, D., Håkegård, J.E., Bagci, U., Rawat, D.B., et al. (2024) Federated Learning for Medical Applica-tions: A Taxonomy, Current Trends, Challenges, and Future Research Direc-tions. IEEE Internet of Things Journal, 11, 7374-7398. https://doi.org/10.1109/jiot.2023.3329061
[28]  Antunes, R.S., Stoffel, R., André da Costa, C., Küderle, A., Yari, I.A. and Eskofier, B. (2022) Federated Learning for Healthcare: Systematic Review and Architecture Proposal. ACM Transactions on Intelligent Systems and Technology, 13, 1-23. https://doi.org/10.1145/3501813
[29]  Bharati, S., Mondal, M.R.H., Podder, P. and Prasath, V.B.S. (2022) Federated Learning: Applications, Challenges and Future Directions. International Journal of Hybrid Intelligent Systems, 18, 19-35. https://doi.org/10.3233/his-220006
[30]  Akande, O.A. (2022) Inte-grating Blockchain with Federated Learning for Privacy-Preserving Data Ana-lytics Across Decentralized Governmental Health Information Systems. Interna-tional Journal of Computer Applications Technology and Research, 11, 622-637.
[31]  Loftus, T.J., Ruppert, M.M., Shickel, B., Ozrazgat-Baslanti, T., Balch, J.A., Efron, P.A., et al. (2022) Federated Learning for Preserving Data Privacy in Collaborative Healthcare Research. Digital Health, 8, 1-5. https://doi.org/10.1177/20552076221134455
[32]  Joshi, M., Pal, A. and Sankarasubbu, M. (2022) Federated Learning for Healthcare Domain-Pipeline, Applications and Challenges. ACM Transactions on Computing for Healthcare, 3, 1-36. https://doi.org/10.1145/3533708
[33]  Aledhari, M., Razzak, R., Parizi, R.M. and Saeed, F. (2020) Federated Learning: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Access, 8, 140699-140725. https://doi.org/10.1109/access.2020.3013541
[34]  Prasad, V.K., Bhattacharya, P., Maru, D., Tanwar, S., Verma, A., Singh, A., et al. (2022) Fed-erated Learning for the Internet-of-Medical-Things: A Survey. Mathematics, 11, Article 151. https://doi.org/10.3390/math11010151
[35]  Mosquera, C., Fer-rer, L., Milone, D.H., Luna, D. and Ferrante, E. (2024) Class Imbalance on Med-ical Image Classification: Towards Better Evaluation Practices for Discrimination and Calibration Performance. European Radiology, 34, 7895-7903. https://doi.org/10.1007/s00330-024-10834-0
[36]  Thabtah, F., Hammoud, S., Kamalov, F. and Gonsalves, A. (2020) Data imbalance in classification: Ex-perimental Evaluation. Information Sciences, 513, 429-441. https://doi.org/10.1016/j.ins.2019.11.004
[37]  Parker, B.J., Günter, S. and Bedo, J. (2007) Stratification Bias in Low Signal Microarray Studies. BMC Bioin-formatics, 8, Article No. 326. https://doi.org/10.1186/1471-2105-8-326
[38]  Araf, I., Idri, A. and Chairi, I. (2024) Cost-Sensitive Learning for Imbalanced Medical Data: A Review. Artifi-cial Intelligence Review, 57, Article No. 80. https://doi.org/10.1007/s10462-023-10652-8
[39]  Fernández, A., García, S., Galar, M., Prati, R.C., Krawczyk, B. and Herrera, F. (2018) Learning from Im-balanced Data Sets. Vol. 10, Springer. https://doi.org/10.1007/978-3-319-98074-4
[40]  Mi, X., Zou, B., Zou, F. and Hu, J. (2021) Permutation-based Identification of Important Biomarkers for Complex Diseases via Machine Learning Models. Nature Communications, 12, Article No. 3008. https://doi.org/10.1038/s41467-021-22756-2
[41]  Gómez-Ramírez, J., ávi-la-Villanueva, M. and Fernández-Blázquez, M.á. (2020) Selecting the Most Im-portant Self-Assessed Features for Predicting Conversion to Mild Cognitive Im-pairment with Random Forest and Permutation-Based Methods. Scientific Re-ports, 10, Article No. 20630. https://doi.org/10.1038/s41598-020-77296-4
[42]  Biswas, S., Grundlingh, N., Boardman, J., White, J. and Le, L. (2025) A Target Permutation Test for Sta-tistical Significance of Feature Importance in Differentiable Models. Electronics, 14, Article 571. https://doi.org/10.3390/electronics14030571
[43]  Liu, S.Y., David, L.C., Susana, G.-R., James, S.M. and Charles, M.P. (2025) Crafted Ex-periments to Evaluate Feature Selection Methods for Single-Cell RNA-Seq Data. NAR Genomics and Bioinformatics, 7, lqaf023. https://doi.org/10.1093/nargab/lqaf023
[44]  Espinosa, R., Sánchez, G., Pal-ma, J. and Jiménez, F. (2025) Permutation-Based Multi-Objective Evolutionary Feature Selection for High-Dimensional Data. arXiv:2501.14310.
[45]  Ali, S., Ahsan, M., Tasnim, L., Afrin, S., Biswas, K., Hossain, M., Ahmed, M., Hashan, R., Islam, K. and Raman, S. (2024) Federated Learning in Healthcare: Model Mis-conducts, Security, Challenges, Applications, and Future Research Directions—A Systematic Review. arXiv:2405.13832.
[46]  Sachin D.N, Annappa, B, Hegde, S., Abhijit, C.S. and Ambesange, S. (2024) Fedcure: A Heterogeneity-Aware Per-sonalized Federated Learning Framework for Intelligent Healthcare Applications in IoMT Environments. IEEE Access, 12, 15867-15883. https://doi.org/10.1109/access.2024.3357514
[47]  Abbas, S.R., Abbas, Z., Zahir, A. and Lee, S.W. (2024) Federated Learning in Smart Healthcare: A Comprehensive Review on Privacy, Security, and Predictive Analytics with IoT Integration. Healthcare, 12, Article 2587. https://doi.org/10.3390/healthcare12242587
[48]  Dasaradharami Reddy, K. and Gadekallu, T.R. (2023) A Comprehensive Survey on Federated Learning Techniques for Healthcare Informatics. Computational Intelligence and Neuro-science, 2023, Article ID: 8393990. https://doi.org/10.1155/2023/8393990
[49]  Fathima, A.S., Basha, S.M., Ahmed, S.T., Mathivanan, S.K., Rajendran, S., Mallik, S., et al. (2023) Federated Learning Based Futuristic Biomedical Big-Data Analysis and Standardization. PLOS ONE, 18, e0291631. https://doi.org/10.1371/journal.pone.0291631
[50]  Zulueta, N.M. (2024) Development of Federated Learning Models for Improved Genetic Variant As-sessment in a Multi-Site Clinical Setting. PhD Diss., Université Paris Cité.
[51]  Nasajpour, M., Pouriyeh, S., Parizi, R.M., Han, M., Mosaiyebzadeh, F., Liu, L., et al. (2025) Federated Learning in Smart Healthcare: A Survey of Ap-plications, Challenges, and Future Directions. Electronics, 14, Article 1750. https://doi.org/10.3390/electronics14091750
[52]  Sadilek, A., Liu, L., Nguyen, D., Kamruzzaman, M., Serghiou, S., Rader, B., et al. (2021) Priva-cy-First Health Research with Federated Learning. npj Digital Medicine, 4, Arti-cle No. 132. https://doi.org/10.1038/s41746-021-00489-2
[53]  Li, S., Cai, T. and Duan, R. (2023) Targeting Underrepresented Populations in Precision Medicine: A Federated Transfer Learning Approach. The Annals of Applied Sta-tistics, 17, Article No. 2970. https://doi.org/10.1214/23-aoas1747
[54]  Gholami, S., Jannat, F., Thompson, A.C., Ong, S.S.Y., Lim, J.I., Leng, T., et al. (2025) Distributed Training of Founda-tion Models for Ophthalmic Diagnosis. Communications Engineering, 4, Article No. 6. https://doi.org/10.1038/s44172-025-00341-5
[55]  Kang, S. (2020) Model Validation Failure in Class Imbalance Problems. Expert Systems with Ap-plications, 146, Article 113190. https://doi.org/10.1016/j.eswa.2020.113190
[56]  Johnson, J.M. and Khosh-goftaar, T.M. (2019) Survey on Deep Learning with Class Imbalance. Journal of Big Data, 6, Article No. 27. https://doi.org/10.1186/s40537-019-0192-5
[57]  Nguyen, G.H., Bou-zerdoum, A. and Phung, S.L. (2009) Learning Pattern Classification Tasks with Imbalanced Data Sets. Pattern Recognition, 10, 1322-1328.
[58]  Rebouças, D.B., Barreto, P.A.P.M., Noronha, L.T., Roza, T.H. and Passos, I.C. (2025) Ma-chine Learning Techniques in Bipolar Disorder. In: Passos, I.C., Berk, M. and Kapczinski, F., Eds., Bipolar Disorder, Springer, 815-835. https://doi.org/10.1007/978-3-031-85519-1_40
[59]  Walsh, C.G., Ripperger, M.A., Hu, Y., Sheu, Y., Lee, H., Wilimitis, D., et al. (2024) Development and Mul-ti-Site External Validation of a Generalizable Risk Prediction Model for Bipolar Disorder. Translational Psychiatry, 14, Article No. 58. https://doi.org/10.1038/s41398-023-02720-y
[60]  Bişkin, O.T., Candemir, C. and Selver, M.A. (2025) Detection of Bipolar Disorder and Schizophrenia Em-ploying Bayesian-Optimized Grad-Cam-Driven Deep Learning. Applied Sciences, 15, Article 1717. https://doi.org/10.3390/app15041717
[61]  Ford, T., Stewart, R. and Downs, J. (2020) Surveillance, Case Registers, and Big Data. In: Jayati Das-Munshi, et al., Eds., Practical Psychiatric Epidemiology, Oxford Uni-versity Press, 219-C13.P111. https://doi.org/10.1093/med/9780198735564.003.0013
[62]  Lu, Z., Pan, H., Dai, Y., Si, X. and Zhang, Y. (2024) Federated Learning with Non-IID Data: A Survey. IEEE Internet of Things Journal, 11, 19188-19209. https://doi.org/10.1109/jiot.2024.3376548
[63]  Nandan, U., Sai, C., Sai, N. and Viswanadapalli, A. (2024) Enhanced Brain Tumor Detection and Privacy Preserving Using Federated Learning. International Journal of Scientific Re-search in Science and Technology, 11, 131-144. https://doi.org/10.32628/IJSRST24116166
[64]  Hsieh, K., Phanishayee, A., Mutlu, O. and Gibbons, P. (2020) The Non-IID Data Quagmire of Decentralized Machine Learning. In: Daumé, H. and Singh, A., Eds., International Conference on Machine Learning, PMLR, 4387-4398.
[65]  Benmalek, M. and Seddiki, A. (2024) Bias in Federated Learning: Factors, Effects, Mitigations, and Open Is-sues. Ingénierie des Systèmes d Information, 29, 2137-2160. https://doi.org/10.18280/isi.290605
[66]  Gadekallu, T.R., Dev, K., Khowaja, S.A., Wang, W., Feng, H., Fang, K., Pandya, S. and Wang, W. (2025) Framework, Standards, Applications and Best practices of Responsible AI: A Comprehensive Survey. arXiv:2504.13979.
[67]  Thirupathi, L., Anusha, G., Reddy Boya, T. and Prasad Cheerla, H.C. (2025) Federated Learning and Personalized Medicine. In: Reddy C, K.K. and Nag, A., Eds., Federated Learning for Neural Disorders in Healthcare 6.0, CRC Press, 248-278. https://doi.org/10.1201/9781003591085-9

Full-Text


Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133