In this article, we continue the development of the Symmetric Theory. What we will show is the coupling between the universe and the medium Planck, understood as the medium that formalises the characteristics of the zero-point field. We will show how the phenomena of the infinitely large of the universe and the infinitely small of the atom harmonize in relation to the medium Planck. We will show how Hawking radiation, Unhru effect, Casimir effect, Entropic force, Stefan-Boltzmann’s constant, and Wien’s displacement law are all phenomena referred to the medium Planck. We will show that the electron in the first energy level of the hydrogen atom can never fall into the atomic nucleus because it is supported by the Planck energy through the phenomenon of resonance. What emerges is a new meaning of the fine structure constant, in the sense of coupling constant between the electron and the medium Planck. Finally, a way is indicated that could solve the wave-particle duality.
Schiller, C. (2006) General Rela-tivity and Cosmology Derived from Principle of Maximum Power or Force. In-ternational Journal of Theoretical Physics, 44, 1629-1647.
Chandrasekhar, S. (1935) The Highly Collapsed Configurations of a Stellar Mass. (Second Paper.). Monthly No-tices of the Royal Astronomical Society, 95, 207-225. https://doi.org/10.1093/mnras/95.3.207
Schwarzschild, K. (1916) über das Gravitationsfeld eines Massenpunktes nach der Einstein Theorie. Sitzungs-berichte der Koniglich Preussischen Akademie der Wissenschaften zu, 189-196.
Jacobson, T. (1995) Thermo-dynamics of Spacetime: The Einstein Equation of State. Physical Review Letters, 75, 1260-1263. https://doi.org/10.1103/physrevlett.75.1260
Padmanabhan, T. (2010) Thermodynamical Aspects of Gravity: New Insights. Reports on Progress in Physics, 73, Article ID: 046901. https://doi.org/10.1088/0034-4885/73/4/046901
Davies, P.C.W. (1975) Scalar Production in Schwarzschild and Rindler Metrics. Journal of Phys-ics A: Mathematical and General, 8, 609-616. https://doi.org/10.1088/0305-4470/8/4/022
Schumacher, F. (1911) Eine neue Sciocoris-Art aus Deutschland (Hem. Het. Pent.). Deutsche Entomologische Zeitschrift, 1911, 148-148. https://doi.org/10.1002/mmnd.48019110809
Casimir, H.B.G. (1947) On the Attraction between Two Perfectly Conducting Plates. Physical Review, 73, 793-795. http://www.astrophys-neunhof.de/serv/Casimir1948.pdf
Stefan, J. (1879) Uber die Beziehung zwischen der Warmestrahlung und der Tempera-tur [About the Relationship between the Thermal Radiation and Temperature]. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften: Mathe-matisch-Naturwissenschaftliche Classe, 79, 391-428.
Boltzmann, L. (1884) Ableitung des Stefan’schen Gesetzes, betreffend die Abhängigkeit der Wärmestrahlung von der Temperatur aus der electromagnetischen Lichttheo-rie. Annalen der Physik, 258, 291-294. https://doi.org/10.1002/andp.18842580616
Longair, M.S. (2003) Theoretical Con-cepts in Physics—An Alternative View of Theoretical Reasoning in Phys-ics—Case Study 5—The Origins of the Concept of Quanta. Cambridge University Press.
Nernst, W. (1916) über einen Versuch, von quantentheoretischen Betrachtungen zur Annahme stetiger Energieänderungen zurückzukehren. Verhandlungen der Deutschen Physikalischen, 18, 83-116.
Bohr, N. (1913) I. On the Constitution of Atoms and Molecules. The London, Edinburgh, and Dub-lin Philosophical Magazine and Journal of Science, 26, 1-25. https://doi.org/10.1080/14786441308634955
Cole, D.C. and Zou, Y. (2004) Simulation Study of Aspects of the Classical Hydrogen Atom Interacting with Electromagnetic Radiation: Circular Orbits. Journal of Scientific Computing, 20, 43-68.
Compton, A.H. (1923) A Quantum Theory of the Scattering of X-Rays by Light Elements. Physical Review, 21, 483-502. https://doi.org/10.1103/physrev.21.483
Cramer, J.G. (1986) The Transactional Interpretation of Quantum Mechan-ics. Reviews of Modern Physics, 58, 647-687. https://doi.org/10.1103/revmodphys.58.647