全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Distances between Bipolar Fuzzy Graphs

DOI: 10.4236/oalib.1113152, PP. 1-13

Subject Areas: Artificial Intelligence

Keywords: Fuzzy Graph, Bipolar Fuzzy Graph, Distance

Full-Text   Cite this paper   Add to My Lib

Abstract

Bipolar fuzzy graphs use positive and negative membership functions to characterize the uncertainty of structured fuzzy data. This article extends the concept of network distance to bipolar fuzzy graphs, provides corresponding definitions, and obtains several remarks.

Cite this paper

Gao, W. (2025). Distances between Bipolar Fuzzy Graphs. Open Access Library Journal, 12, e3152. doi: http://dx.doi.org/10.4236/oalib.1113152.

References

[1]  Gao, W., Wang, W. and Zheng, L. (2022) Fuzzy Fractional Factors in Fuzzy Graphs. International Journal of Intelligent Systems, 37, 9886-9903. https://doi.org/10.1002/int.23019
[2]  Sun, Z., Liang, L. and Gao, W. (2023) Disturbance Observer-Based Fuzzy Adaptive Optimal Finite-Time Control for Nonlinear Systems. Applied Mathematics in Science and Engineering, 31, Arti-cle ID: 2199211.https://doi.org/10.1080/27690911.2023.2199211
[3]  Binu, M., Mathew, S. and Mordeson, J.N. (2019) Connectivity Index of a Fuzzy Graph and Its Application to Human Trafficking. Fuzzy Sets and Systems, 360, 117-136. https://doi.org/10.1016/j.fss.2018.06.007
[4]  Binu, M., Mathew, S. and Mordeson, J.N. (2020) Wiener Index of a Fuzzy Graph and Application to Illegal Immigration Networks. Fuzzy Sets and Systems, 384, 132-147. https://doi.org/10.1016/j.fss.2019.01.022
[5]  Binu, M., Mathew, S. and Mordeson, J.N. (2021) Cyclic Connectivity Index of Fuzzy Graphs. IEEE Transac-tions on Fuzzy Systems, 29, 1340-1349. https://doi.org/10.1109/tfuzz.2020.2973941
[6]  Binu, M., Mathew, S. and Mordeson, J.N. (2022) Cyclic Connectivity Status of Fuzzy Graphs. IEEE Trans-actions on Fuzzy Systems, 30, 5526-5533. https://doi.org/10.1109/tfuzz.2022.3179778
[7]  Zhou, S., Wu, J. and Xu, Y. (2021) Toughness, Isolated Toughness and Path Factors in Graphs. Bulletin of the Australian Mathematical Society, 106, 195-202. https://doi.org/10.1017/s0004972721000952
[8]  Akram, M. (2011) Bipo-lar Fuzzy Graphs. Information Sciences, 181, 5548-5564. https://doi.org/10.1016/j.ins.2011.07.037
[9]  Akram, M. and Dudek, W.A. (2011) Regular Bipolar Fuzzy Graphs. Neural Computing and Applications, 21, 197-205. https://doi.org/10.1007/s00521-011-0772-6
[10]  Akram, M. (2013) Bipolar Fuzzy Graphs with Applications. Knowledge-Based Systems, 39, 1-8. https://doi.org/10.1016/j.knosys.2012.08.022
[11]  Yang, H., Li, S., Yang, W. and Lu, Y. (2013) Notes on “Bipolar Fuzzy Graphs”. Information Sciences, 242, 113-121. https://doi.org/10.1016/j.ins.2013.03.049
[12]  Rashmanlou, H., Samanta, S., Pal, M. and Borzooei, R.A. (2015) Bipolar Fuzzy Graphs with Categorical Properties. International Journal of Computational Intelligence Sys-tems, 8, 808-818. https://doi.org/10.1080/18756891.2015.1063243
[13]  Rashmanlou, H., Samanta, S., Pal, M. and Borzooei, R.A. (2016) Product of Bipolar Fuzzy Graphs and Their Degree. International Journal of General Systems, 45, 1-14. https://doi.org/10.1080/03081079.2015.1072521
[14]  Sarwar, M. and Akram, M. (2017) Certain Algorithms for Computing Strength of Competition in Bipolar Fuzzy Graphs. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 25, 877-896. https://doi.org/10.1142/s0218488517500374
[15]  Akram, M. and Feng, F. and Saeid, A.B. and Leoreanu-Fotea, V. (2018) A New Mul-tiple Criteria Deci-sion-Making Method Based on Bipolar Fuzzy Soft Graphs. Iranian Journal of Fuzzy Systems, 15, 73-92. https://doi.org/10.22111/ijfs.2018.4116
[16]  Poulik, S. and Ghorai, G. (2019) Detour G-Interior Nodes and Detour G-Boundary Nodes in Bipolar Fuzzy Graph with Applications. Hacettepe Journal of Mathematics and Statistics, 49, 106-119. https://doi.org/10.15672/hjms.2019.666
[17]  Poulik, S. and Ghorai, G. (2019) Certain Indices of Graphs under Bipolar Fuzzy Environment with Applications. Soft Computing, 24, 5119-5131. https://doi.org/10.1007/s00500-019-04265-z
[18]  Gong, S. and Hua, G. (2022) Fuzzy Edge Connectivity in Bipolar Fuzzy Networks and the Applications in Topology Design. International Journal of Intelligent Systems, 37, 5425-5442. https://doi.org/10.1002/int.22797
[19]  Gong, S. and Hua, G. (2023) Bipolar Interval-Valued Fuzzy Set in Graph and Hypergraph Settings. Journal of Intelligent & Fuzzy Systems, 44, 1755-1767. https://doi.org/10.3233/jifs-212551
[20]  Nithyanandham, D., Augustin, F., Narayanamoorthy, S., Ahmadian, A., Balaenu, D. and Kang, D. (2023) Bipolar Intuitionistic Fuzzy Graph Based Decision-Making Model to Identify Flood Vul-nerable Region. Environmental Science and Pollution Research, 30, 125254-125274. https://doi.org/10.1007/s11356-023-27548-3
[21]  Nithyanandham, D. and Augustin, F. (2023) A Bipolar Fuzzy p-Competition Graph Based ARAS Tech-nique for Prioritizing COVID-19 Vaccines. Applied Soft Computing, 146, Article ID: 110632. https://doi.org/10.1016/j.asoc.2023.110632
[22]  Almousa, M.M. and Tchier, F. (2023) Rejection and Symmetric Difference of Bipolar Picture Fuzzy Graph. Demonstratio Mathematica, 56, Article ID: 20230107. https://doi.org/10.1515/dema-2023-0107
[23]  Gong, S. and Hua, G. (2021) Remarks on Wiener Index of Bipolar Fuzzy Incidence Graphs. Frontiers in Phys-ics, 9, Article ID: 677882. https://doi.org/10.3389/fphy.2021.677882
[24]  Rehman, F.U., Rashid, T. and Hussain, M.T. (2023) Applications of Maximum Matching by Using Bipolar Fuzzy Incidence Graphs. PLOS ONE, 18, e0285603. https://doi.org/10.1371/journal.pone.0285603
[25]  Wei, G., Alsaadi, F.E., Hayat, T. and Alsaedi, A. (2017) Bipolar Fuzzy Hamacher Aggregation Opera-tors in Multiple Attribute Decision Making. International Journal of Fuzzy Sys-tems, 20, 1-12. https://doi.org/10.1007/s40815-017-0338-6
[26]  Han, Y., Lu, Z., Du, Z., Luo, Q. and Chen, S. (2018) A YinYang Bipolar Fuzzy Cognitive TOPSIS Method to Bipolar Disorder Diagnosis. Computer Methods and Pro-grams in Biomedicine, 158, 1-10. https://doi.org/10.1016/j.cmpb.2018.02.004
[27]  Alghamdi, M.A., Alshehri, N.O. and Akram, M. (2018) Multi-Criteria Decision-Making Methods in Bipolar Fuzzy Environment. International Journal of Fuzzy Systems, 20, 2057-2064. https://doi.org/10.1007/s40815-018-0499-y
[28]  Riaz, M. and Tehrim, S.T. (2020) A Robust Extension of VIKOR Method for Bipolar Fuzzy Sets Using Con-nection Numbers of SPA Theory Based Metric Spaces. Artificial Intelligence Re-view, 54, 561-591. https://doi.org/10.1007/s10462-020-09859-w
[29]  Ali, J. (2023) Norm-Based Distance Measure of Q-Rung Orthopair Fuzzy Sets and Its Application in Decision-Making. Computational and Applied Mathematics, 42, Article No. 184. https://doi.org/10.1007/s40314-023-02313-x
[30]  Lovász, L. and Szegedy, B. (2006) Limits of Dense Graph Sequences. Journal of Combina-torial Theory, Series B, 96, 933-957. https://doi.org/10.1016/j.jctb.2006.05.002
[31]  Mémoli, F. (2011) Gromov-Wasserstein Distances and the Metric Approach to Object Matching. Foundations of Computational Mathematics, 11, 417-487. https://doi.org/10.1007/s10208-011-9093-5
[32]  Mémoli, F. (2012) Some Properties of Gromov-Hausdorff Distances. Discrete & Computational Geometry, 48, 416-440. https://doi.org/10.1007/s00454-012-9406-8
[33]  Chowdhury, S. and Mémoli, F. (2022) Distances and Isomorphism between Networks: Sta-bility and Convergence of Network Invariants. Journal of Applied and Computa-tional Topology, 7, 243-361. https://doi.org/10.1007/s41468-022-00105-6
[34]  Kim, J., Samanta, S.K., Lim, P.K., Lee, J.G. and Hur, K. (2019) Bipolar Fuzzy Topological Spaces. Annals of Fuzzy Mathematics and Informatics, 17, 205-229. https://doi.org/10.30948/afmi.2019.17.3.205

Full-Text


Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133