Solar energy is becoming a viable and alternative renewable energy source. The sun generates solar energy, whereas fossil fuels are extracted, which is detrimental to the environment. The availability of fossil fuels is diminishing, although solar energy is plentiful. The utilization of fossil fuels to fulfil our requirements, such as electricity, produces energy applicable to diverse purposes. The combustion of fossil fuels generates detrimental gasses, resulting in air, water, and soil pollution, thereby adversely impacting the ecosystem. Simultaneously, it adversely impacts both humans and wildlife. The second point is that the combustion of fossil fuels induces climate change, which affects the ecology and ecosystem. Climate change is causing the extinction of several animal and plant species on Earth. Fossil fuels emit greater quantities of detrimental gasses that exacerbate the likelihood of the greenhouse effect. In the future, solar energy will serve as an exemplary alternative to fossil fuels due to its lack of adverse impacts. Considering these significant factors, we have provided an extensive overview of the growing technology involving the application of nanofluid in solar energy harvesting systems, which enhances the performance of solar systems using nanofluid. A proficient approach to enhancing the thermal efficiency of solar energy systems is the utilization of nanofluid as a superior heat transfer fluid with enhanced thermophysical characteristics. This review study aims to examine recent advancements in the comprehensive applications of nanofluids in solar energy harvesting systems, including solar water heaters, solar concentrators or collectors, solar PV/T systems, and solar stills. This review will examine the impacts of fossil fuel utilization, followed by an analysis of nanomaterials and their characteristics. Lastly, we will examine the various applications of nanofluids in diverse solar energy systems.
Cite this paper
Muthuraman, U. , Saravanan, N. , Sivaraj, M. and Kumar, A. (2025). Analysis of the Application of Nanofluids in the Capture and Utilization of Renewable Energy . Open Access Library Journal, 12, e2997. doi: http://dx.doi.org/10.4236/oalib.1112997.
IEA (2021) Global Energy-Related CO2 Emissions, 1990-2021. IEA. https://www.iea.org/data-and-statistics/charts/global-energy-related-co2-emissions-1990-2021
Purohit, I., Purohit, P. and Shekhar, S. (2013) Evaluat-ing the Potential of Concentrating Solar Power Generation in Northwestern In-dia. Energy Policy, 62, 157-175. https://doi.org/10.1016/j.enpol.2013.06.069
Koroneos, C., Spachos, T. and Moussiopoulos, N. (2003) Exergy Analysis of Renewable Energy Sources. Renewable Energy, 28, 295-310. https://doi.org/10.1016/s0960-1481(01)00125-2
Mussard, M. (2017) Solar Energy under Cold Climatic Conditions: A Review. Renewable and Sustain-able Energy Reviews, 74, 733-745. https://doi.org/10.1016/j.rser.2017.03.009
Prasad, A.A., Taylor, R.A. and Kay, M. (2017) Assessment of Solar and Wind Resource Synergy in Aus-tralia. Applied Energy, 190, 354-367. https://doi.org/10.1016/j.apenergy.2016.12.135
Cuce, E., Cuce, P.M., Guclu, T. and Besir, A.B. (2020) On the Use of Nanofluids in Solar Energy Ap-plications. Journal of Thermal Science, 29, 513-534. https://doi.org/10.1007/s11630-020-1269-3
Ahmadi, M.H., Ghazvini, M., Sadeghzadeh, M., Alhuyi Nazari, M. and Ghalandari, M. (2019) Utilization of Hybrid Nanofluids in Solar Energy Applications: A Review. Nano-Structures & Nano-Objects, 20, Article ID: 100386. https://doi.org/10.1016/j.nanoso.2019.100386
Singh, T., Hussien, M.A.A., Al-Ansari, T., Saoud, K. and McKay, G. (2018) Critical Review of Solar Thermal Resources in GCC and Application of Nanofluids for Development of Ef-ficient and Cost Effective CSP Technologies. Renewable and Sustainable Energy Reviews, 91, 708-719. https://doi.org/10.1016/j.rser.2018.03.050
Chavez Panduro, E.A., Finotti, F., Largiller, G. and Lervåg, K.Y. (2022) A Review of the Use of Nanofluids as Heat-Transfer Fluids in Parabolic-Trough Collectors. Ap-plied Thermal Engineering, 211, Article ID: 118346. https://doi.org/10.1016/j.applthermaleng.2022.118346
Elsheikh, A.H., Sharshir, S.W., Mostafa, M.E., Essa, F.A. and Ahmed Ali, M.K. (2018) Applications of Nanofluids in Solar Energy: A Review of Recent Advances. Renewable and Sustainable Energy Re-views, 82, 3483-3502. https://doi.org/10.1016/j.rser.2017.10.108
Gupta, S.K. and Pradhan, S. (2021) A Review of Recent Advances and the Role of Nanofluid in Solar Photo-voltaic Thermal (PV/T) System. Materials Today: Proceedings, 44, 782-791. https://doi.org/10.1016/j.matpr.2020.10.708
Gupta, S.K. and Gupta, S. (2021) The Role of Nanofluids in Solar Thermal Energy: A Review of Recent Advances. Materials Today: Proceedings, 44, 401-412. https://doi.org/10.1016/j.matpr.2020.09.749
Babita, Sharma, S.K. and Gupta, S.M. (2016) Preparation and Evaluation of Stable Nanofluids for Heat Transfer Application: A Review. Experimental Thermal and Fluid Science, 79, 202-212. https://doi.org/10.1016/j.expthermflusci.2016.06.029
Leong, K.Y., Ku Ahmad, K.Z., Ong, H.C., Ghazali, M.J. and Baharum, A. (2017) Synthe-sis and Thermal Conductivity Characteristic of Hybrid Nanofluids—A Review. Renewable and Sustainable Energy Reviews, 75, 868-878. https://doi.org/10.1016/j.rser.2016.11.068
Ganvir, R.B., Walke, P.V. and Kriplani, V.M. (2017) Heat Transfer Characteristics in Nanofluid—A Review. Renewable and Sustainable Energy Reviews, 75, 451-460. https://doi.org/10.1016/j.rser.2016.11.010
Ahmad, S.H.A., Saidur, R., Mahbubul, I.M. and Al-Sulaiman, F.A. (2017) Optical Properties of Various Nanofluids Used in Solar Collector: A Review. Renewable and Sustainable Energy Reviews, 73, 1014-1030. https://doi.org/10.1016/j.rser.2017.01.173
Yang, L. and Du, K. (2017) A Comprehensive Review on Heat Transfer Characteristics of TiO2 Nanofluids. International Journal of Heat and Mass Transfer, 108, 11-31. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.086
Akilu, S., Sharma, K.V., Baheta, A.T. and Mamat, R. (2016) A Review of Thermophysical Properties of Water Based Composite Nanofluids. Renewable and Sustainable Energy Reviews, 66, 654-678. https://doi.org/10.1016/j.rser.2016.08.036
Zhang, X. and Li, J. (2022) A Review of Uncertainties in the Study of Heat Transfer Properties of Nanofluids. Heat and Mass Transfer, 59, 621-653. https://doi.org/10.1007/s00231-022-03276-1
Zhu, Z., Qi, H., Niu, Z., Shi, J., Gao, B. and Ren, Y. (2023) Accurate Estimation of the Optical Properties of Nanofluids for Solar Energy Harvesting Using the Null-Collision Forward Monte Carlo Method. Renewable Energy, 211, 140-154. https://doi.org/10.1016/j.renene.2023.04.130
Ahmed, S.E., Arafa, A.A.M. and Hussein, S.A. (2023) Bioconvective Flow of a Variable Properties Hybrid Nanofluid over a Spinning Disk with Arrhenius Activation Energy, Soret and Dufour Impacts. Numerical Heat Transfer, Part A: Applications, 85, 900-922. https://doi.org/10.1080/10407782.2023.2193709
Ramasamy, D., Ran-jith, R., Ramachandran, T., Murugapoopathi, S. and Surendarnath, S. (2023) Optimisation of Flow and Fluid Properties of Nanofluids to Enhance the Perfor-mance of Solar Flat Plate Collector Using MCDM Technique. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engi-neering. https://doi.org/10.1177/09544089221150738
Joudeh, N. and Linke, D. (2022) Nanoparticle Classification, Physicochemical Properties, Char-acterization, and Applications: A Comprehensive Review for Biologists. Journal of Nanobiotechnology, 20, Article No. 262. https://doi.org/10.1186/s12951-022-01477-8
Mageswari, A., Srinivasan, R., Subramanian, P., Ramesh, N. and Gothandam, K.M. (2016) Nanomaterials: Classification, Biological Synthesis and Characterization. In: Ranjan, S., Dasgupta, N. and Lichtfouse, E., Eds., Nanoscience in Food and Agri-culture 3, Springer, 31-71. https://doi.org/10.1007/978-3-319-48009-1_2
Strambeanu, N., Deme-trovici, L., Dragos, D. and Lungu, M. (2014) Nanoparticles: Definition, Classifica-tion and General Physical Properties. In: Lungu, M., Neculae, A., Bunoiu, M. and Biris, C., Eds., Nanoparticles’ Promises and Risks, Springer, 3-8. https://doi.org/10.1007/978-3-319-11728-7_1
Patel, A., Patra, F., Shah, N. and Khedkar, C. (2018) Application of Nanotechnology in the Food Industry: Present Status and Future Prospects. In: Grumezescu, A.M. and Holban, A.M., Eds., Impact of Nanoscience in the Food Industry, Elsevier, 1-27. https://doi.org/10.1016/b978-0-12-811441-4.00001-7
Keykhosravi, A., Vanani, M.B. and Aghayari, C. (2021) Tio2 Nanoparticle-Induced Xanthan Gum Polymer for EOR: Assessing the Underlying Mechanisms in Oil-Wet Carbonates. Journal of Petroleum Science and Engineering, 204, Article ID: 108756. https://doi.org/10.1016/j.petrol.2021.108756
Selvakumar, N., Sivaraj, M. and Muthuraman, S. (2016) Microstructure Characterization and Thermal Properties of Al-TiC Sintered Nano Composites. Applied Thermal Engineering, 107, 625-632. https://doi.org/10.1016/j.applthermaleng.2016.07.005
Vivien, A., Guillaumont, M., Meziane, L., Salzemann, C., Aubert, C., Halbert, S., et al. (2019) Role of Oleylamine Revisited: An Original Disproportionation Route to Monodispersed Cobalt and Nickel Nanocrystals. Chemistry of Materials, 31, 960-968. https://doi.org/10.1021/acs.chemmater.8b04435
Wilson, A. (2012) With Functionalization, Nanodiamonds May Increase Durability of PDC Cutters. Journal of Petroleum Technology, 64, 134-137. https://doi.org/10.2118/1212-0134-jpt
Rafiee, R. and Shahzadi, R. (2018) Mechanical Properties of Nanoclay and Nanoclay Reinforced Polymers: A Review. Polymer Composites, 40, 431-445. https://doi.org/10.1002/pc.24725
Saha, S., Bansal, S. and Khanuja, M. (2022) Classification of Nanomaterials and Their Physical and Chemical Nature. In: Ghorbanpour, M. and Shahid, M.A., Eds., Nano-Enabled Agrochemicals in Ag-riculture, Elsevier, 7-34. https://doi.org/10.1016/b978-0-323-91009-5.00001-x
Sajid, M. and Płotka-Wasylka, J. (2020) Nanoparticles: Synthesis, Characteristics, and Appli-cations in Analytical and Other Sciences. Microchemical Journal, 154, Article ID: 104623. https://doi.org/10.1016/j.microc.2020.104623
Asadian, E., Ghalkhani, M. and Shahrokhian, S. (2019) Electrochemical Sensing Based on Carbon Nanoparticles: A Review. Sensors and Actuators B: Chemical, 293, 183-209. https://doi.org/10.1016/j.snb.2019.04.075
Dantas de Oliveira, A. and Augusto Gonçalves Beatrice, C. (2019) Polymer Nanocomposites with Different Types of Nanofiller. In: Sivasankaran, S., Ed., Nanocomposites—Recent Evolutions, IntechOpen. https://doi.org/10.5772/intechopen.81329
Gade, A., Ingle, A., Whiteley, C. and Rai, M. (2010) Mycogenic Metal Nanoparticles: Progress and Applications. Biotechnology Letters, 32, 593-600. https://doi.org/10.1007/s10529-009-0197-9
Wu, Q., Miao, W., Zhang, Y., Gao, H. and Hui, D. (2020) Mechanical Properties of Nanomaterials: A Re-view. Nanotechnology Reviews, 9, 259-273. https://doi.org/10.1515/ntrev-2020-0021
Pithawalla, Y.B., El-Shall, M.S., Deevi, S.C., Ström, V. and Rao, K.V. (2001) Synthesis of Magnetic Inter-metallic Feal Nanoparticles from a Non-Magnetic Bulk Alloy. The Journal of Physical Chemistry B, 105, 2085-2090. https://doi.org/10.1021/jp002354i
Qiu, L., Zhu, N., Feng, Y., Michaelides, E.E., żyła, G., Jing, D., et al. (2020) A Review of Recent Advances in Thermophysical Properties at the Nanoscale: From Solid State to Colloids. Phys-ics Reports, 843, 1-81. https://doi.org/10.1016/j.physrep.2019.12.001
Hori, H., Teranishi, T., Nakae, Y., Seino, Y., Miyake, M. and Yamada, S. (1999) Anomalous Magnetic Polarization Effect of Pd and Au Nanoparticles. Physics Letters A, 263, 406-410. https://doi.org/10.1016/s0375-9601(99)00742-2
Jun, Y., Seo, J. and Cheon, J. (2008) Nanoscaling Laws of Magnetic Nanoparticles and Their Applicabilities in Biomedical Sciences. Accounts of Chemical Research, 41, 179-189. https://doi.org/10.1021/ar700121f
Khlebtsov, N.G. and Dykman, L.A. (2010) Optical Properties and Biomedical Applications of Plasmonic Nanoparti-cles. Journal of Quantitative Spectroscopy and Radiative Transfer, 111, 1-35. https://doi.org/10.1016/j.jqsrt.2009.07.012
Kreibig, U. and Vollmer, M. (1995) Theoretical Considerations. Springer Series in Materials Science, 25, 13-201. https://doi.org/10.1007/978-3-662-09109-8_2
Lee, B.J., Park, K., Walsh, T. and Xu, L. (2012) Radiative Heat Transfer Analysis in Plasmonic Nanofluids for Direct Solar Thermal Absorption. Journal of Solar Energy Engi-neering, 134, Article ID: 021009. https://doi.org/10.1115/1.4005756
Genc, A.M., Ezan, M.A. and Turgut, A. (2018) Thermal Performance of a Nanofluid-Based Flat Plate Solar Collector: A Transient Numerical Study. Applied Thermal Engineering, 130, 395-407. https://doi.org/10.1016/j.applthermaleng.2017.10.166
Otanicar, T.P., Phelan, P.E., Prasher, R.S., Rosengarten, G. and Taylor, R.A. (2010) Nanoflu-id-Based Direct Absorption Solar Collector. Journal of Renewable and Sustainable Energy, 2, Article ID: 033102. https://doi.org/10.1063/1.3429737
Mahamude, A., Harun, W., Kadirgama, K., Ramasamy, D., Farhana, K., Saleh, K., et al. (2022) Experimental Study on the Efficiency Improvement of Flat Plate Solar Collectors Using Hybrid Nanofluids Graphene/Waste Cotton. Energies, 15, Article 2309. https://doi.org/10.3390/en15072309
Yousefi, T., Veysi, F., Shojaeiza-deh, E. and Zinadini, S. (2012) An Experimental Investigation on the Effect of Al2O3-H2O Nanofluid on the Efficiency of Flat-Plate Solar Collectors. Renewable Energy, 39, 293-298. https://doi.org/10.1016/j.renene.2011.08.056
Kim, H., Kim, J. and Cho, H. (2017) Experimental Study on Performance Improvement of U-Tube Solar Collector Depending on Nanoparticle Size and Concentration of Al2O3 Nanofluid. Energy, 118, 1304-1312. https://doi.org/10.1016/j.energy.2016.11.009
Chaji, H., Ajabshirchi, Y., Esmaeilzadeh, E., Zeinali Heris, S., Hedayatizadeh, M. and Kahani, M. (2013) Experimental Study on Thermal Efficiency of Flat Plate Solar Collector Using TiO2/Water Nanofluid. Modern Applied Science, 7, 60-69. https://doi.org/10.5539/mas.v7n10p60
Faizal, M., Saidur, R., Mekhilef, S. and Alim, M.A. (2013) Energy, Economic and Environmental Analysis of Metal Oxides Nanofluid for Flat-Plate Solar Collector. Energy Conversion and Management, 76, 162-168. https://doi.org/10.1016/j.enconman.2013.07.038
Mahian, O., Kianifar, A., Sahin, A.Z. and Wongwises, S. (2014) Performance Analysis of a Minichan-nel-Based Solar Collector Using Different Nanofluids. Energy Conversion and Management, 88, 129-138. https://doi.org/10.1016/j.enconman.2014.08.021
Tong, Y., Kim, J. and Cho, H. (2015) Effects of Thermal Performance of Enclosed-Type Evacuated U-Tube Solar Collector with Multi-Walled Carbon Nanotube/Water Nanofluid. Renewable Energy, 83, 463-473. https://doi.org/10.1016/j.renene.2015.04.042
Sabiha, M.A., Saidur, R., Hassani, S., Said, Z. and Mekhilef, S. (2015) Energy Performance of an Evacu-ated Tube Solar Collector Using Single Walled Carbon Nanotubes Nanofluids. Energy Conversion and Management, 105, 1377-1388. https://doi.org/10.1016/j.enconman.2015.09.009
Noghrehabadi, A., Hajidavalloo, E. and Moravej, M. (2016) An Experimental Investigation on the Performance of a Symmetric Conical Solar Collector Using SiO2/Water Nanofuid. Transport Phenomena in Nano and Micro Scales, 5, 23-29.
Khullar, V., Tyagi, H., Phelan, P.E., Otanicar, T.P., Singh, H. and Taylor, R.A. (2012) Solar Energy Harvesting Using Nanofluids-Based Concentrating Solar Collector. Jour-nal of Nanotechnology in Engineering and Medicine, 3, Article ID: 031003. https://doi.org/10.1115/1.4007387
Wang, Y., Xu, J., Liu, Q., Chen, Y. and Liu, H. (2016) Performance Analysis of a Parabolic Trough Solar Collector Using Al2O3/synthetic Oil Nanofluid. Applied Thermal Engineering, 107, 469-478. https://doi.org/10.1016/j.applthermaleng.2016.06.170
Ghasemi, S.E. and Mehdizadeh Ahangar, G.R. (2014) Numerical Analysis of Performance of Solar Parabolic Trough Collector with Cu-Water Nanofuid. International Journal of Nano Dimension, 5, 233-240.
Menbari, A., Alemrajabi, A.A. and Rezaei, A. (2016) Heat Transfer Analysis and the Effect of CuO/Water Nanofluid on Direct Absorption Concentrating Solar Collector. Applied Thermal Engineering, 104, 176-183. https://doi.org/10.1016/j.applthermaleng.2016.05.064
Subbiah, M., Natarajan, S. and Murugan, S. (2024) Analyze the Effects of Implementing a Solar Thermal Hot Water System on Oman’s Economy and Environmental Fac-tors. Open Access Library Journal, 11, 1-17. https://doi.org/10.4236/oalib.1111127
Hordy, N., Rabilloud, D., Meunier, J. and Coulombe, S. (2015) A Stable Carbon Nanotube Nanofluid for Latent Heat‐driven Volumetric Absorption Solar Heating Applications. Journal of Nanomaterials, 2015, Article ID: 850217. https://doi.org/10.1155/2015/850217
Bouslimi, J., Alkathiri, A.A., Al-thagafi, T.M., Jamshed, W. and Eid, M.R. (2022) Thermal Properties, Flow and Comparison between Cu and Ag Nanoparticles Suspended in Sodium Alginate as Sutterby Nanofluids in Solar Collector. Case Studies in Thermal Engineering, 39, Article ID: 102358. https://doi.org/10.1016/j.csite.2022.102358
Suman, S., Khan, M.K. and Pathak, M. (2015) Performance Enhancement of Solar Collectors—A Review. Renewable and Sustainable Energy Reviews, 49, 192-210. https://doi.org/10.1016/j.rser.2015.04.087
Gupta, S.K. and Dixit, S. (2021) Progress and Application of Nanofluids in Solar Collectors: An Overview of Recent Advances. Materials Today: Proceedings, 44, 250-259. https://doi.org/10.1016/j.matpr.2020.09.462
Muhammad, M.J., Mu-hammad, I.A., Che Sidik, N.A. and Muhammad Yazid, M.N.A.W. (2016) Thermal Performance Enhancement of Flat-Plate and Evacuated Tube Solar Collectors Using Nanofluid: A Review. International Communications in Heat and Mass Transfer, 76, 6-15. https://doi.org/10.1016/j.icheatmasstransfer.2016.05.009
Zambolin, E. and Del Col, D. (2010) Experimental Analysis of Thermal Performance of Flat Plate and Evacuated Tube Solar Collectors in Stationary Standard and Daily Conditions. Solar Energy, 84, 1382-1396. https://doi.org/10.1016/j.solener.2010.04.020
Tong, Y., Kim, J. and Cho, H. (2015) Effects of Thermal Performance of Enclosed-Type Evacuated U-Tube Solar Collector with Multi-Walled Carbon Nanotube/Water Nanofluid. Renewa-ble Energy, 83, 463-473. https://doi.org/10.1016/j.renene.2015.04.042
Sabiha, M.A., Saidur, R., Hassani, S., Said, Z. and Mekhilef, S. (2015) Energy Performance of an Evacu-ated Tube Solar Collector Using Single Walled Carbon Nanotubes Nanofluids. Energy Conversion and Management, 105, 1377-1388. https://doi.org/10.1016/j.enconman.2015.09.009
Liu, Z., Hu, R., Lu, L., Zhao, F. and Xiao, H. (2013) Thermal Performance of an Open Thermosyphon Using Nanofluid for Evacuated Tubular High Temperature Air Solar Collector. Energy Conversion and Management, 73, 135-143. https://doi.org/10.1016/j.enconman.2013.04.010
Kumar, S. and Tiwari, A.K. (2022) Performance Evaluation of Evacuated Tube Solar Collector Using Boron Nitride Nanofluid. Sustainable Energy Technologies and Assessments, 53, Article ID: 102466. https://doi.org/10.1016/j.seta.2022.102466
Jia, Y., Alva, G. and Fang, G. (2019) Development and Applications of Photovolta-ic-Thermal Systems: A Review. Renewable and Sustainable Energy Reviews, 102, 249-265. https://doi.org/10.1016/j.rser.2018.12.030
Guo, J., Lin, S., Bilbao, J.I., White, S.D. and Sproul, A.B. (2017) A Review of Photovoltaic Ther-mal (PV/T) Heat Utilisation with Low Temperature Desiccant Cooling and De-humidification. Renewable and Sustainable Energy Reviews, 67, 1-14. https://doi.org/10.1016/j.rser.2016.08.056
Suresh, A.K., Khurana, S., Nandan, G., Dwivedi, G. and Kumar, S. (2018) Role on Nanofluids in Cooling Solar Photovoltaic Cell to Enhance Overall Efficiency. Materials Today: Proceed-ings, 5, 20614-20620. https://doi.org/10.1016/j.matpr.2018.06.442
Diwania, S., Siddiqui, A.S., Agrawal, S. and Kumar, R. (2021) Modeling and Assessment of the Ther-mo-Electrical Performance of a Photovoltaic-Thermal (PVT) System Using Dif-ferent Nanofluids. Journal of the Brazilian Society of Mechanical Sciences and En-gineering, 43, Article No. 190. https://doi.org/10.1007/s40430-021-02909-6
Grosu, Y., Nithiyanan-tham, U., González-Fernández, L. and Faik, A. (2019) Preparation and Charac-terization of Nanofluids Based on Molten Salts with Enhanced Thermophysical Properties for Thermal Energy Storage at Concentrate Solar Power. AIP Confer-ence Proceedings, 2126, Article ID: 200021. https://doi.org/10.1063/1.5117736
Jiang, L., Gao, L. and Sun, J. (2003) Production of Aqueous Colloidal Dispersions of Carbon Nanotubes. Journal of Colloid and Interface Science, 260, 89-94. https://doi.org/10.1016/s0021-9797(02)00176-5
Clogston, J.D. and Patri, A.K. (2010) Zeta Potential Measurement. In: McNeil, S., Ed., Characteriza-tion of Nanoparticles Intended for Drug Delivery, Humana Press, 63-70. https://doi.org/10.1007/978-1-60327-198-1_6
Mahbubul, I.M., Saidur, R., Amalina, M.A., Elcioglu, E.B. and Okutucu-Ozyurt, T. (2015) Effective Ultra-sonication Process for Better Colloidal Dispersion of Nanofluid. Ultrasonics Sonochemistry, 26, 361-369. https://doi.org/10.1016/j.ultsonch.2015.01.005
Sarkar, M.N.I., Sifat, A.I., Reza, S.M.S. and Sadique, M.S. (2017) A Review of Optimum Parameter Values of a Passive Solar Still and a Design for Southern Bangladesh. Renewa-bles: Wind, Water, and Solar, 4, Article No. 1. https://doi.org/10.1186/s40807-017-0038-8
Subbiah, M., Natarajan, S., Murugan, S. and Ayyappan K. (2024) Implementation of a Solar-Thermal Hy-brid Air Conditioning System in Muscat for Energy Conservation. Thermal Sci-ence and Engineering, 7, Article ID: 10996.https://doi.org/10.24294/tse10996
Iqbal, A., Mahmoud, M.S., Sayed, E.T., Elsaid, K., Abdelkareem, M.A., Alawadhi, H., et al. (2021) Evalua-tion of the Nanofluid-Assisted Desalination through Solar Stills in the Last Dec-ade. Journal of Environmental Management, 277, Article ID: 111415. https://doi.org/10.1016/j.jenvman.2020.111415
Kabeel, A.E., Omara, Z.M. and Essa, F.A. (2014) Improving the Performance of Solar Still by Using Nanofluids and Providing Vacuum. Energy Conversion and Management, 86, 268-274. https://doi.org/10.1016/j.enconman.2014.05.050
Elango, T., Kannan, A. and Kalidasa Murugavel, K. (2015) Performance Study on Single Basin Single Slope Solar Still with Different Water Nanofluids. Desalination, 360, 45-51. https://doi.org/10.1016/j.desal.2015.01.004
Mahian, O., Kiani-far, A., Heris, S.Z., Wen, D., Sahin, A.Z. and Wongwises, S. (2017) Nanofluids Effects on the Evaporation Rate in a Solar Still Equipped with a Heat Exchanger. Nano Energy, 36, 134-155. https://doi.org/10.1016/j.nanoen.2017.04.025
Kabeel, A.E., Omara, Z.M. and Essa, F.A. (2014) Enhancement of Modified Solar Still Integrated with External Condenser Using Nanofluids: An Experimental Approach. Energy Con-version and Management, 78, 493-498. https://doi.org/10.1016/j.enconman.2013.11.013