全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

On Constrained Minimizers for Schrödinger Equations with Hardy Term

DOI: 10.4236/oalib.1112924, PP. 1-16

Subject Areas: Functional Analysis

Keywords: Schrö,dinger Equations, Hardy Term

Full-Text   Cite this paper   Add to My Lib

Abstract

In this article, our focus lies on a Schrödinger equation incorporating a Hardy term. To identify the global minimizers of the functional I under a mass constraint, we utilize the Hardy inequality. In addition, we reveal that every energy ground state is directly linked to the least action solution of the associated action functional. This finding affirmatively addresses the question of whether, under broad assumptions, The functional I is characterized by a mountain pass structure and satisfies the (PS)C condition. Subsequently, this guarantees the existence of a nontrivial critical point   for the energy functional I .

Cite this paper

Fu, C. (2025). On Constrained Minimizers for Schrödinger Equations with Hardy Term. Open Access Library Journal, 12, e2924. doi: http://dx.doi.org/10.4236/oalib.1112924.

References

[1]  Smets, D. (2004) Nonlinear Schrödinger Equations with Hardy Potential and Critical Nonlinearities. Transactions of the American Mathematical Society, 357, 2909-2938. https://doi.org/10.1090/s0002-9947-04-03769-9
[2]  Li, H. and Zou, W. (2023) Normalized Ground State for the Sobolev Critical Schrödinger Equation Involving Hardy Term with Combined Nonlinearities. Mathematische Nachrichten, 296, 2440-2466. https://doi.org/10.1002/mana.202000481
[3]  Zhang, Q. and Duan, J. (2024) Constraint Minimization Problem of the Nonlinear Schrödinger Equation with the Anderson Hamilto-nian. Journal of Mathematical Analysis and Applications, 538, Article 128360. https://doi.org/10.1016/j.jmaa.2024.128360
[4]  Zeng, X. and Zhang, L. (2017) Normalized Solutions for Schrödinger–Poisson–Slater Equations with Unbounded Potentials. Journal of Mathematical Analysis and Applications, 452, 47-61. https://doi.org/10.1016/j.jmaa.2017.02.053
[5]  Chen, J. and Chen, Z. (2023) Normalized Ground States for a Hardy–Littlewood–Sobolev Upper Critical Schrödinger Equation with Double Choquard Type Nonlinear Terms. Applied Mathemat-ics Letters, 138, Article 108521. https://doi.org/10.1016/j.aml.2022.108521
[6]  Jiang, S., Xu, Z., Su, H., Pati, A.K. and Chen, J. (2018) Generalized Hardy’s Paradox. Physical Review Letters, 120, Article 050403. https://doi.org/10.1103/physrevlett.120.050403
[7]  Wang, C. and Shang, Y. (2019) Existence and Multiplicity of Solu-tions for Schrödinger Equation with Inverse Square Potential and Hardy–Sobolev Critical Exponent. Nonlinear Analysis: Real World Applications, 46, 525-544. https://doi.org/10.1016/j.nonrwa.2018.10.002
[8]  Jeanjean, L. and Lu, S. (2022) Normalized Solutions with Positive Energies for a Coercive Problem and Application to the Cubic–Quintic Nonlinear Schrödinger Equation. Mathematical Models and Methods in Applied Sciences, 32, 1557-1588. https://doi.org/10.1142/s0218202522500361
[9]  Shibata, M. (2013) Stable Standing Waves of Nonlinear Schrödinger Equations with a General Nonlinear Term. Manuscripta Mathematica, 143, 221-237. https://doi.org/10.1007/s00229-013-0627-9
[10]  Berestycki, H. and Lions, P.-. (1983) Nonlinear Scalar Field Equations, I Existence of a Ground State. Archive for Rational Mechanics and Analysis, 82, 313-345. https://doi.org/10.1007/bf00250555
[11]  Willem, M. (1996) Minimax Theorems, Volume 24 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc.
[12]  Bouchekif, M. and Messirdi, S. (2015) On Elliptic Problems with Two Critical Hardy–Sobolev Exponents at the Same Pole. Applied Mathematics Letters, 42, 9-14. https://doi.org/10.1016/j.aml.2014.10.012
[13]  Jeanjean, L. and Lu, S. (2022) On Global Minimizers for a Mass Con-strained Problem. Calculus of Variations and Partial Differential Equations, 61, Article No. 214. https://doi.org/10.1007/s00526-022-02320-6
[14]  Lions, P.L. (1984) The Concentration-Compactness Principle in the Calculus of Variations. The Locally Compact Case, Part 2. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 1, 223-283. https://doi.org/10.1016/s0294-1449(16)30422-x
[15]  Jeanjean, L. and Lu, S. (2020) A Mass Supercritical Problem Revisited. Calculus of Variations and Partial Differential Equations, 59, Article No. 174. https://doi.org/10.1007/s00526-020-01828-z

Full-Text


Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133