全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

The Complementary Roles of CXCR4 and CXCR7 in Melanoma Migration

DOI: 10.4236/oalib.1112617, PP. 1-20

Subject Areas: Cell Biology

Keywords: Melanoma, CXCR4, CXCR7, Cell Migration

Full-Text   Cite this paper   Add to My Lib

Abstract

The two known receptors, CXCR4 and CXCR7, for the chemokine stromal cell-derived factor-1 (SDF1) play a role in the development and metastasis of multiple cancers, including melanoma. CXCR4 receptor signaling influences melanoma cell responses, including proliferation, migration, and metastasis. CXCR7 receptor signaling can also induce melanoma malignancy by increasing proliferation. However, it is unknown if CXCR7 directly affects melanoma cell migration. Here, we blocked CXCR4 and CXCR7 receptor signaling by inhibitors and by reducing their expression through siRNA treatment. Both methods efficiently reduced melanoma cell migration with two different assays. These results suggest that the CXCR7 receptor is as relevant as the CXCR4 receptor in affecting the migratory capabilities of melanoma cells. These findings support that downregulation or inhibition of the CXCR7 receptor through targeted therapies may benefit melanoma treatment.

Cite this paper

Lacap, R. , Yousefi, N. , Hain, S. , Dahan, N. , Tran, T. , Gorgy, J. , Caguioa, R. , Malone, C. S. , Abrol, R. and Bellard, M. E. D. (2025). The Complementary Roles of CXCR4 and CXCR7 in Melanoma Migration. Open Access Library Journal, 12, e2617. doi: http://dx.doi.org/10.4236/oalib.1112617.

References

[1]  Tas, F. (2012) Metastatic Behavior in Melanoma: Timing, Pattern, Survival, and Influencing Factors. Journal of Oncology, 2012, 1-9. https://doi.org/10.1155/2012/647684
[2]  SEER*Explorer (2024) Surveillance Research Program. National Cancer Institute.
[3]  Baggiolini, A., Varum, S., Mateos, J.M., Bettosini, D., John, N., Bonalli, M., et al. (2015) Premigratory and Migratory Neural Crest Cells Are Multipotent in Vivo. Cell Stem Cell, 16, 314-322. https://doi.org/10.1016/j.stem.2015.02.017
[4]  Sarvaiya, P.J., Guo, D., Ulasov, I., Gabikian, P. and Lesniak, M.S. (2013) Chemokines in Tumor Progression and Metastasis. Oncotarget, 4, 2171-2185. https://doi.org/10.18632/oncotarget.1426
[5]  Rossi, D. and Zlotnik, A. (2000) The Biology of Chemokines and Their Receptors. Annual Review of Immunology, 18, 217-242. https://doi.org/10.1146/annurev.immunol.18.1.217
[6]  Rollins, B.J. (1997) Chemokines. Blood, 90, 909-928. https://doi.org/10.1182/blood.v90.3.909
[7]  Lewellis, S.W. and Knaut, H. (2012) Attractive Guidance: How the Chemokine SDF1/CXCL12 Guides Different Cells to Different Locations. Seminars in Cell & Developmental Biology, 23, 333-340. https://doi.org/10.1016/j.semcdb.2012.03.009
[8]  Dubrovska, A., Cojoc, M., et al. (2013) Emerging Targets in Cancer Management: Role of the CXCL12/CXCR4 Axis. OncoTargets and Therapy, 6, 1347-1361. https://doi.org/10.2147/ott.s36109
[9]  Lee, E., Han, J., Kim, K., Choi, H., Cho, E. and Lee, T.R. (2012) CXCR7 Mediates SDF1-Induced Melanocyte Migration. Pigment Cell & Melanoma Research, 26, 58-66. https://doi.org/10.1111/pcmr.12024
[10]  Maksym, R.B., Tarnowski, M., Grymula, K., Tarnowska, J., Wysoczynski, M., Liu, R., et al. (2009) The Role of Stromal-Derived Factor-1—CXCR7 Axis in Development and Cancer. European Journal of Pharmacology, 625, 31-40. https://doi.org/10.1016/j.ejphar.2009.04.071
[11]  Liedtke, D., Erhard, I., Abe, K., Furutani-Seiki, M., Kondoh, H. and Schartl, M. (2013) XMRK-Induced Melanoma Progression Is Affected by SDF1 Signals through CXCR7. Pigment Cell & Melanoma Research, 27, 221-233. https://doi.org/10.1111/pcmr.12188
[12]  Décaillot, F.M., Kazmi, M.A., Lin, Y., Ray-Saha, S., Sakmar, T.P. and Sachdev, P. (2011) CXCR7/CXCR4 Heterodimer Constitutively Recruits β-Arrestin to Enhance Cell Migration. Journal of Biological Chemistry, 286, 32188-32197. https://doi.org/10.1074/jbc.m111.277038
[13]  García-Cuesta, E.M., Santiago, C.A., Vallejo-Díaz, J., Juarranz, Y., Rodríguez-Frade, J.M. and Mellado, M. (2019) The Role of the CXCL12/CXCR4/ACKR3 Axis in Autoimmune Diseases. Frontiers in Endocrinology, 10, Article 585. https://doi.org/10.3389/fendo.2019.00585
[14]  Mannavola, F., Tucci, M., Felici, C., Passarelli, A., D’Oronzo, S. and Silvestris, F. (2019) Tumor-Derived Exosomes Promote the in Vitro Osteotropism of Melanoma Cells by Activating the SDF-1/CXCR4/CXCR7 Axis. Journal of Translational Medicine, 17, Article No. 230. https://doi.org/10.1186/s12967-019-1982-4
[15]  Werner, T.A., Forster, C.M., Dizdar, L., Verde, P.E., Raba, K., Schott, M., et al. (2018) CXCR4/CXCR7/CXCL12-Axis in Follicular Thyroid Carcinoma. Journal of Cancer, 9, 929-940. https://doi.org/10.7150/jca.23042
[16]  Katsura, M., Shoji, F., Okamoto, T., Shimamatsu, S., Hirai, F., Toyokawa, G., et al. (2017) Correlation between CXCR4/CXCR7/CXCL12 Chemokine Axis Expression and Prognosis in Lymph-Node-Positive Lung Cancer Patients. Cancer Science, 109, 154-165. https://doi.org/10.1111/cas.13422
[17]  Spender, L.C. and Inman, G.J. (2016) Fatal Attractions? Correlations of CXCL12-CXCR4-CXCR7 Expression with Disease Progression in Melanoma and Kaposi Sarcoma. British Journal of Dermatology, 175, 1140-1141. https://doi.org/10.1111/bjd.15136
[18]  McConnell, A.T., Ellis, R., Pathy, B., Plummer, R., Lovat, P.E. and O’Boyle, G. (2016) The Prognostic Significance and Impact of the CXCR4-CXCR7-CXCL12 Axis in Primary Cutaneous Melanoma. British Journal of Dermatology, 175, 1210-1220. https://doi.org/10.1111/bjd.14720
[19]  Lobsiger, C.S., Smith, P.M., Buchstaller, J., Schweitzer, B., Franklin, R.J.M., Suter, U., et al. (2001) Spl201: A Conditionally Immortalized Schwann Cell Precursor Line That Generates Myelin. Glia, 36, 31-47. https://doi.org/10.1002/glia.1093
[20]  Ngo, T., Stephens, B.S., Gustavsson, M., Holden, L.G., Abagyan, R., Handel, T.M., et al. (2020) Crosslinking-Guided Geometry of a Complete CXC Receptor-Chemokine Complex and the Basis of Chemokine Subfamily Selectivity. PLOS Biology, 18, e3000656. https://doi.org/10.1371/journal.pbio.3000656
[21]  Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., et al. (2021) Highly Accurate Protein Structure Prediction with Alphafold. Nature, 596, 583-589. https://doi.org/10.1038/s41586-021-03819-2
[22]  Yen, Y., Schafer, C.T., Gustavsson, M., Eberle, S.A., Dominik, P.K., Deneka, D., et al. (2022) Structures of Atypical Chemokine Receptor 3 Reveal the Basis for Its Promiscuity and Signaling Bias. Science Advances, 8, eabn8063. https://doi.org/10.1126/sciadv.abn8063
[23]  Webb, B. and Sali, A. (2020) Protein Structure Modeling with Modeller. In: Methods in Molecular Biology, Springer, 239-255. https://doi.org/10.1007/978-1-0716-0892-0_14
[24]  Feng, S., Park, S., Choi, Y.K. and Im, W. (2023) CHARMM-GUI Membrane Builder: Past, Current, and Future Developments and Applications. Journal of Chemical Theory and Computation, 19, 2161-2185. https://doi.org/10.1021/acs.jctc.2c01246
[25]  Botello-Smith, W.M. and Luo, R. (2015) Applications of MMPBSA to Membrane Proteins I: Efficient Numerical Solutions of Periodic Poisson-Boltzmann Equation. Journal of Chemical Information and Modeling, 55, 2187-2199. https://doi.org/10.1021/acs.jcim.5b00341
[26]  Santiago, L. and Abrol, R. (2019) Understanding G Protein Selectivity of Muscarinic Acetylcholine Receptors Using Computational Methods. International Journal of Molecular Sciences, 20, Article 5290. https://doi.org/10.3390/ijms20215290
[27]  Jonkman, J.E.N., Cathcart, J.A., Xu, F., Bartolini, M.E., Amon, J.E., Stevens, K.M., et al. (2014) An Introduction to the Wound Healing Assay Using Live-Cell Microscopy. Cell Adhesion & Migration, 8, 440-451. https://doi.org/10.4161/cam.36224
[28]  Uchida, D., Kuribayashi, N., Kinouchi, M., Sawatani, Y., Shimura, M., Mori, T., et al. (2018) Effect of a Novel Orally Bioavailable CXCR4 Inhibitor, AMD070, on the Metastasis of Oral Cancer Cells. Oncology Reports, 40, 303-308. https://doi.org/10.3892/or.2018.6400
[29]  Huynh, C., Brussee, J.M., Pouzol, L., Fonseca, M., Meyer zu Schwabedissen, H.E., Dingemanse, J., et al. (2021) Target Engagement of the First-in-Class CXCR7 Antagonist ACT-1004-1239 Following Multiple-Dose Administration in Mice and Humans. Biomedicine & Pharmacotherapy, 144, Article 112363. https://doi.org/10.1016/j.biopha.2021.112363
[30]  Falasca, M., Raimondi, C. and Maffucci, T. (2011) Boyden Chamber. In: Methods in Molecular Biology, Humana Press, 87-95. https://doi.org/10.1007/978-1-61779-207-6_7
[31]  Muinonen-Martin, A.J., Veltman, D.M., Kalna, G. and Insall, R.H. (2010) An Improved Chamber for Direct Visualisation of Chemotaxis. PLOS ONE, 5, e15309. https://doi.org/10.1371/journal.pone.0015309
[32]  Coggins, N.L., Trakimas, D., Chang, S.L., Ehrlich, A., Ray, P., Luker, K.E., et al. (2014) CXCR7 Controls Competition for Recruitment of β-Arrestin 2 in Cells Expressing Both CXCR4 and CXCR7. PLOS ONE, 9, e98328. https://doi.org/10.1371/journal.pone.0098328
[33]  Chatterjee, S., Behnam Azad, B. and Nimmagadda, S. (2014) The Intricate Role of CXCR4 in Cancer. In: Advances in Cancer Research, Elsevier, 31-82. https://doi.org/10.1016/b978-0-12-411638-2.00002-1
[34]  Gao, Y., Zhao, Z., Meng, X., Chen, H. and Fu, G. (2018) Migration and Invasion in B16 F10 Mouse Melanoma Cells Are Regulated by Nrf2 Inhibition during Treatment with Ionizing Radiation. Oncology Letters, 16, 1959-1966. https://doi.org/10.3892/ol.2018.8799
[35]  Shi, Y., Riese, D.J. and Shen, J. (2020) The Role of the CXCL12/CXCR4/CXCR7 Chemokine Axis in Cancer. Frontiers in Pharmacology, 11, Article 574667. https://doi.org/10.3389/fphar.2020.574667
[36]  Longo-Imedio, M.I., Longo, N., Treviño, I., Lázaro, P. and Sánchez-Mateos, P. (2005) Clinical Significance of CXCR3 and CXCR4 Expression in Primary Melanoma. International Journal of Cancer, 117, 861-865. https://doi.org/10.1002/ijc.21269
[37]  Scala, S., Giuliano, P., Ascierto, P.A., Ierano, C., Franco, R., Napolitano, M., et al. (2006) Human Melanoma Metastases Express Functional CXCR4. Clinical Cancer Research, 12, 2427-2433. https://doi.org/10.1158/1078-0432.ccr-05-1940
[38]  Tucci, M.G., Lucarini, G., Brancorsini, D., Zizzi, A., Pugnaloni, A., Giacchetti, A., et al. (2007) Involvement of E-Cadherin, Β-Catenin, CDC42 and CXCR4 in the Progression and Prognosis of Cutaneous Melanoma. British Journal of Dermatology, 157, 1212-1216. https://doi.org/10.1111/j.1365-2133.2007.08246.x
[39]  Salazar, N., Muñoz, D., Kallifatidis, G., Singh, R.K., Jordà, M. and Lokeshwar, B.L. (2014) The Chemokine Receptor CXCR7 Interacts with EGFR to Promote Breast Cancer Cell Proliferation. Molecular Cancer, 13, Article 198. https://doi.org/10.1186/1476-4598-13-198
[40]  Liu, H., Cheng, Q., Xu, D., Wang, W., Fang, Z., Xue, D., et al. (2020) Overexpression of CXCR7 Accelerates Tumor Growth and Metastasis of Lung Cancer Cells. Respiratory Research, 21, Article No. 287. https://doi.org/10.1186/s12931-020-01518-6
[41]  Wang, H., Tao, L., Qi, K., Zhang, H., Feng, D., Wei, W., et al. (2015) CXCR7 Functions in Colon Cancer Cell Survival and Migration. Experimental and Therapeutic Medicine, 10, 1720-1724. https://doi.org/10.3892/etm.2015.2748
[42]  Xu, S., Tang, J., Wang, C., Liu, J., Fu, Y. and Luo, Y. (2019) CXCR7 Promotes Melanoma Tumorigenesis via Src Kinase Signaling. Cell Death & Disease, 10, Article No. 191. https://doi.org/10.1038/s41419-019-1442-3
[43]  Ieranò, C., D’Alterio, C., Giarra, S., Napolitano, M., Rea, G., Portella, L., et al. (2019) CXCL12 Loaded-Dermal Filler Captures CXCR4 Expressing Melanoma Circulating Tumor Cells. Cell Death & Disease, 10, Article No. 562. https://doi.org/10.1038/s41419-019-1796-6
[44]  O’Boyle, G., Swidenbank, I., Marshall, H., Barker, C.E., Armstrong, J., White, S.A., et al. (2013) Inhibition of CXCR4–CXCL12 Chemotaxis in Melanoma by Amd11070. British Journal of Cancer, 108, 1634-1640. https://doi.org/10.1038/bjc.2013.124
[45]  Yamada, K., Maishi, N., Akiyama, K., Towfik Alam, M., Ohga, N., Kawamoto, T., et al. (2015) CXCL12–CXCR7 Axis Is Important for Tumor Endothelial Cell Angiogenic Property. International Journal of Cancer, 137, 2825-2836. https://doi.org/10.1002/ijc.29655
[46]  O’Connor, K. and Chen, M. (2013) Dynamic Functions of Rhoa in Tumor Cell Migration and Invasion. Small GTPases, 4, 141-147. https://doi.org/10.4161/sgtp.25131
[47]  Alshaer, W., Zureigat, H., Al Karaki, A., Al-Kadash, A., Gharaibeh, L., Hatmal, M.M., et al. (2021) SiRNA: Mechanism of Action, Challenges, and Therapeutic Approaches. European Journal of Pharmacology, 905, 174178. https://doi.org/10.1016/j.ejphar.2021.174178
[48]  Kurose, H. and Kim, S.G. (2022) Pharmacology of Antagonism of GPCR. Biological and Pharmaceutical Bulletin, 45, 669-674. https://doi.org/10.1248/bpb.b22-00143
[49]  Kato, T., Matsuo, Y., Ueda, G., Murase, H., Aoyama, Y., Omi, K., et al. (2022) Enhanced CXCL12/CXCR4 Signaling Increases Tumor Progression in Radiation Resistant Pancreatic Cancer. Oncology Reports, 47, Article No. 68. https://doi.org/10.3892/or.2022.8279
[50]  Parameswaran, R., Yu, M., Lim, M., Groffen, J. and Heisterkamp, N. (2011) Combination of Drug Therapy in Acute Lymphoblastic Leukemia with a CXCR4 Antagonist. Leukemia, 25, 1314-1323. https://doi.org/10.1038/leu.2011.76
[51]  Basson, C., Serem, J.C., Bipath, P. and Hlophe, Y.N. (2023) Chemokines as Possible Therapeutic Targets in Metastatic Melanoma. Cancer Medicine, 12, 14387-14402. https://doi.org/10.1002/cam4.6055
[52]  Puchert, M. and Engele, J. (2013) The Peculiarities of the SDF-1/CXCL12 System: In Some Cells, CXCR4 and CXCR7 Sing Solos, in Others, They Sing Duets. Cell and Tissue Research, 355, 239-253. https://doi.org/10.1007/s00441-013-1747-y
[53]  Hattermann, K. and Mentlein, R. (2013) An Infernal Trio: The Chemokine CXCL12 and Its Receptors CXCR4 and CXCR7 in Tumor Biology. Annals of Anatomy—Anatomischer Anzeiger, 195, 103-110. https://doi.org/10.1016/j.aanat.2012.10.013
[54]  D’Agostino, G., Artinger, M., Locati, M., Perez, L., Legler, D.F., Bianchi, M.E., et al. (2020) β-Arrestin1 and β-Arrestin2 Are Required to Support the Activity of the CXCL12/HMGB1 Heterocomplex on CXCR4. Frontiers in Immunology, 11, Article 550824. https://doi.org/10.3389/fimmu.2020.550824

Full-Text


Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133