全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Solving the Economic Dispatch Problem of Power Systems Based on Multi-Population Genetic Algorithm

DOI: 10.4236/oalib.1112522, PP. 1-9

Subject Areas: Electric Engineering

Keywords: Economic Dispatch Problem, Multi-Population Genetic Algorithm, Optimization

Full-Text   Cite this paper   Add to My Lib

Abstract

The economic dispatch problem in power systems is a classic issue in the field of power systems. This paper first uses the traditional genetic algorithm to solve the economic dispatch problem of power systems. The simulation results show that the classic genetic algorithm falls into the dilemma of local minimum values. Therefore, we introduce a multi-population genetic algorithm, setting different crossover and mutation probabilities in different populations, and introducing an immigration operator to replace the worst individuals in different populations with the best individuals found by various populations. The simulation results show that the introduction of the multi-population genetic algorithm avoids the algorithm falling into premature situations to a certain extent during the entire iteration process. Compared with the classic genetic algorithm, the optimal solution obtained by the multi-population genetic algorithm is obviously better than the optimal solution obtained by the classic genetic algorithm.

Cite this paper

Dang, Y. and Ren, Y. (2024). Solving the Economic Dispatch Problem of Power Systems Based on Multi-Population Genetic Algorithm. Open Access Library Journal, 11, e2522. doi: http://dx.doi.org/10.4236/oalib.1112522.

References

[1]  Kalakova, A., Nunna, H.S.V.S.K., Jamwal, P.K. and Doolla, S. (2021) A Novel Genetic Algorithm Based Dynamic Economic Dispatch with Short-Term Load Forecasting. IEEE Transactions on Industry Applications, 57, 2972-2982. https://doi.org/10.1109/tia.2021.3065895
[2]  吴越安, 杜昌平, 杨睿, 等. 基于改进遗传算法的倾转旋翼无人机区域覆盖路径规划[J]. 浙江大学学报(工学版), 2024, 58(10): 2031-2039.
[3]  黄新林, 张隆飛, 唐小伟. 基于改进遗传算法的家电回收车辆路径规划方法[J]. 同济大学学报(自然科学版), 2024, 52(1): 27-34.
[4]  李翠萍, 司文博, 李军徽, 等. 基于集合经验模态分解和多目标遗传算法的火-多储系统调频功率双层优化[J]. 电工技术学报, 2024, 39(7): 2017-2032.
[5]  殷二帅, 李强. 基于遗传算法的光伏-热电耦合系统多目标优化研究[J]. 工程热物理学报, 2023, 44(6): 1669-1674.
[6]  Roy, P. and Chakrabarti, A. (2011) Modified Shuffled Frog Leaping Algorithm for Solving Economic Load Dispatch Problem. Energy and Power Engineering, 3, 551-556. https://doi.org/10.4236/epe.2011.34068
[7]  Ohaegbuchi, D.N., Maliki, O.S., Okwaraoka, C.P.A. and Okwudiri, H.E. (2022) Solution of Combined Heat and Power Economic Dispatch Problem Using Di-rect Optimization Algorithm. Energy and Power Engineering, 14, 737-746. https://doi.org/10.4236/epe.2022.1412040
[8]  朱云辰, 程明骏, 郑昕文, 等. 基于优化第三代非支配排序遗传算法的城市应急设施模糊选址[J]. 浙江大学学报(工学版), 2024, 58(9): 1832-1843.
[9]  Lin, W., Wandelt, S. and Sun, X. (2021) Efficient Network Dismantling through Genetic Algorithms. Soft Computing, 26, 3107-3125. https://doi.org/10.1007/s00500-021-06475-w
[10]  Chang, C. and Lin, C. (2021) Dormitory Assignment Using a Genetic Algorithm. Applied Artificial Intelligence, 35, 2276-2297. https://doi.org/10.1080/08839514.2021.1999595
[11]  Ermakov, S.M. and Semenchikov, D.N. (2019) Genetic Global Optimization Algorithms. Communications in Statistics-Simulation and Computation, 51, 1503-1512. https://doi.org/10.1080/03610918.2019.1672739
[12]  Trubakov, A.O. and Medvedkov, N.V. (2022) Image Restoration Using Genetic Algorithms. Programming and Computer Software, 48, 199-207. https://doi.org/10.1134/s0361768822030112
[13]  Nishida, K. (2022) Kernel Density Estimation by Genetic Algorithm. Journal of Statistical Computation and Simulation, 93, 1263-1281. https://doi.org/10.1080/00949655.2022.2134379
[14]  Petrovan, A., Matei, O. and Pop, P.C. (2022) A Comparative Study between Haploid Genetic Algorithms and Diploid Genetic Algorithms. Carpathian Journal of Mathematics, 39, 433-458. https://doi.org/10.37193/cjm.2023.02.08
[15]  Chen, H., Chen, C. and Wang, Y. (2022) Auto-Design of Mul-ti-Pass Cell with Small Size and Long Optical Path Length Using Parallel Multi-Population Genetic Algorithm. IEEE Sensors Journal, 22, 6518-6527. https://doi.org/10.1109/jsen.2022.3151847

Full-Text


Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133