全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

The Role of Epstein-Barr Virus in the Pathogenesis of Multiple Sclerosis

DOI: 10.4236/oalib.1112227, PP. 1-15

Subject Areas: Cell Biology

Keywords: Epstein-Barr Virus, Multiple Sclerosis, Latent, Pathogenesis, Immune System

Full-Text   Cite this paper   Add to My Lib

Abstract

Epstein Barr Virus (EBV) is a ubiquitous human lymphotropic herpesvirus which is also called Gamma herpesvirus and has been involved in several cancers. EBV is the first human tumor virus identified. There has been much epidemiological and mechanistic evidence to prove the causal role of EBV in multiple sclerosis (MS). Multiple Sclerosis is a chronic autoimmune disease of the central nervous system characterized by demyelination and neuroinflammation. For this paper, I aim to provide answers to questions like how a virus, which leads to benign latent infection, can promote cancers and autoimmune disease, how EBV plays an important role in the development of multiple sclerosis, how EBV is involved in the pathogenesis of multiple sclerosis and how this study will help to find the way for future MS treatments. Scientists have long suspected but failed to prove the link between viruses and multiple sclerosis (autoimmune disease). A study led by Stanford Medicine researchers proves that EBV triggers multiple sclerosis by priming the immune system to attack the body’s nervous system. This research paper aims to provide an overview of the current understanding of the role of Epstein Barr Virus in the pathogenesis of multiple sclerosis.

Cite this paper

Pandey, B. (2024). The Role of Epstein-Barr Virus in the Pathogenesis of Multiple Sclerosis. Open Access Library Journal, 11, e2227. doi: http://dx.doi.org/10.4236/oalib.1112227.

References

[1]  Centers for Disease Control and Prevention About Epstein Barr Virus. https://www.cdc.gov
[2]  National Library of Medicine. Epstein Barr Virus Antibody Test. https://medlineplus.gov/ency/article/003513.htm
[3]  Begum, J. and Wat-son, S. (2023) Epstein Barr Virus Infection: Symptoms, Diagnosis and Treat-ment. https://www.webmd.com/a-to-z-guides/epstein-barr-virus
[4]  IARC (1997) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Volume 70. Epstein Barr Virus. https://www.ncbi.nlm.nih.gov/books/NBK385500/
[5]  Multiple Sclerosis. https://www.nhs.uk/conditions/multiple-sclerosis/
[6]  Soldan, S.S. and Lieberman, P.M. (2022) Epstein-Barr Virus and Multiple Sclerosis. Nature Re-views Microbiology, 21, 51-64. https://doi.org/10.1038/s41579-022-00770-5
[7]  Jacobs, A. (2024) New Approach to Epstein Barr Virus and Resulting Diseases. ScienceDaily. www.sciencedaily.com/releases/2024/05/240523153711.htm
[8]  Bach, J.-F. (2002) The Effect of Infections on Susceptibility to Autoimmune and Aller-gic Diseases. The New England Journal of Medicine, 347, 911-920. https://www.nejm.org/doi/full/10.1056/NEJMra020100 
[9]  Sharaf, S.-A. (2017) Infectious Mononucleosis and Multiple Sclerosis. https://pubmed.ncbi.nlm.nih.gov/28619433
[10]  Bjornevik, K., Cortese, M., Healy, B.C., Kuhle, J., Mina, M.J., Leng, Y., et al. (2022) Longitudinal Analysis Reveals High Prevalence of Epstein-Barr Virus Associated with Multiple Sclero-sis. Science, 375, 296-301. https://doi.org/10.1126/science.abj8222
[11]  Munger, K. and Ascherio, A. (2016) Epidemiology of Multiple Sclerosis: From Risk Factors to Prevention—An Update. Seminars in Neurology, 36, 103-114. https://doi.org/10.1055/s-0036-1579693
[12]  Lunemann, J.D. and Ascherio, A. (2009) Immune Responses to EBNA1: Biomarkers in MS. Neurology, 73, 13-14. https://doi.org/10.1212/wnl.0b013e3181aa2a5f
[13]  Harley, J.B., Chen, X., Pujato, M., Miller, D., Maddox, A., Forney, C., et al. (2018) Transcrip-tion Factors Operate across Disease Loci, with EBNA2 Implicated in Autoim-munity. Nature Genetics, 50, 699-707. https://doi.org/10.1038/s41588-018-0102-3
[14]  Afrasiabi, A., et al. (2019) Evidence from Genome Wide Association Studies Implicates Reduced Control of Epstein-Barr Virus Infection in Multiple Sclerosis Susceptibility. Genome Medi-cine, 11, 26.
[15]  Pender, M.P., et al. (2017) Defective T-Cell Control of Ep-stein Barr Virus Infection in Multiple Sclerosis. Clinical & Translational Immu-nology, 6, e126.
[16]  Virtanen, J.O., Wohler, J., Fenton, K., Reich, D.S. and Ja-cobson, S. (2014) Oligoclonal Bands in Multiple Sclerosis Reactive against Two Herpesviruses and Association with Magnetic Resonance Imaging Findings. Mul-tiple Sclerosis, 20, 27-34.
[17]  LanzTV (2022) Clonally Expanded B-Cells in Multiple Sclerosis Bind EBV, EBNA1 and GlialCAM.
[18]  Lunemann, J.D., Jelcic, I., Roberts, S., Lutterotti, A., Tackenberg, B., Martin, R., et al. (2008) EBNA1-Specific T Cells from Patients with Multiple Sclerosis Cross React with Myelin Antigens and Co-Produce IFN-Gamma and Il-2. The Journal of Experi-mental Medicine, 205, 1763-1773. https://doi.org/10.1084/jem.20072397
[19]  Dirmeier, U., Hoffmann, R., Kilger, E., Schultheiss, U., Briseno, C., Gires, O., et al. (2005) Latent Membrane Protein 1 of Epstein-Barr Virus Coordinately Regulates Proliferation with Con-trol of Apoptosis. Oncogene, 24, 1711-1717. https://doi.org/10.1038/sj.onc.1208367
[20]  van Langelaar, J., Wierenga-Wolf, A.F., Samijn, J.P.A., Luijks, C.J.M., Siepman, T.A., van Doorn, P.A., et al. (2020) The Association of Epstein-Barr Virus Infection with CXCR3 B-Cell Development in Multiple Sclerosis: Impact of Immunotherapies. Europe-an Journal of Immunology, 51, 626-633. https://doi.org/10.1002/eji.202048739
[21]  Zivadinov, R., Guan, Y., Jakimovski, D., Ramanathan, M. and Weinstock-Guttman, B. (2019) The Role of Epstein-Barr Virus in Multiple Sclerosis: From Molecular Pathophysiology to in Vivo Imaging. Neural Regeneration Research, 14, 373-386. https://doi.org/10.4103/1673-5374.245462
[22]  Pender, M.P. (2010) The Essential Role of Epstein-Barr Virus in the Pathogenesis of Multiple Sclerosis. The Neuroscientist, 17, 351-367. https://doi.org/10.1177/1073858410381531
[23]  Bjornevik, K., Münz, C., Cohen, J.I. and Ascherio, A. (2023) Epstein-Barr Virus as a Leading Cause of Multiple Sclerosis: Mechanisms and Implications. Nature Reviews Neurology, 19, 160-171. https://doi.org/10.1038/s41582-023-00775-5
[24]  Legette, H. (2022) Study Identifies How Epstein Barr Virus Triggers Multiple Sclero-sis.
[25]  Giovannoni, G. (2024) Targeting Epstein-Barr Virus in Multiple Sclero-sis: When and How? Current Opinion in Neurology, 37, 228-236. https://doi.org/10.1097/wco.0000000000001266
[26]  National Toxicology Program (2016) Report on Carcinogens Monograph on Epstein-Barr Virus: RoC Monograph 07. https://www.ncbi.nlm.nih.gov/books/NBK582491/
[27]  Bar-Or, A., et al. (2020) Epstein-Barr Virus in Multiple Sclerosis: Theories and Emerging Immu-notherapies. Trends in Molecular Medicine, 26, 296-310.
[28]  Hauser, S.L., et al. (2017) Ocrelizumab versus Interferon Beta-la in Relapsing Multiple Sclero-sis. The New England Journal of Medicine, 376, 221-234. https://pubmed.ncbi.nlm.nih.gov/28002679/
[29]  Cencioni, M.T., Magliozzi, R., Nicholas, R., Ali, R., Malik, O., Reynolds, R., et al. (2017) Programmed Death 1 Is Highly Expressed on CD8 CD57 T Cells in Patients with Stable Multiple Sclerosis and Inhibits Their Cytotoxic Response to Epstein-Barr Virus. Immu-nology, 152, 660-676. https://doi.org/10.1111/imm.12808
[30]  Pender, M.P., Csurhes, P.A., Burrows, J.M. and Burrows, S.R. (2017) Defective T-Cell Control of Epstein-Barr Virus Infection in Multiple Sclerosis. Clinical & Transla-tional Immunology, 6, e147. https://doi.org/10.1038/cti.2017.25
[31]  Pender, M.P., Csurhes, P.A., Lenar-czyk, A., Pfluger, C.M.M. and Burrows, S.R. (2009) Decreased T Cell Reactivity to Epstein-Barr Virus Infected Lymphoblastoid Cell Lines in Multiple Sclerosis. Journal of Neurology, Neurosurgery & Psychiatry, 80, 498-505. https://doi.org/10.1136/jnnp.2008.161018
[32]  Jilek, S., Schluep, M., Meylan, P., Vingerhoets, F., Guignard, L., Monney, A., et al. (2008) Strong Ebv-Specific CD8 T-Cell Response in Patients with Early Multiple Sclerosis. Brain, 131, 1712-1721. https://doi.org/10.1093/brain/awn108
[33]  Pender, M.P., et al. (2018) Ep-stein Barr Virus-Specific T-Cell Therapy for Progressive Multiple Sclerosis. JCI Insight, 3, e124714. https://pubmed.ncbi.nlm.nih.gov/30429369/
[34]  Pender, M.P. and Khanna, R. (2014) Epstein-Barr Virus-Specific Adoptive Immunotherapy: A New Horizon for Multiple Sclerosis Treatment? Immunotherapy, 6, 659-661. https://doi.org/10.2217/imt.14.43
[35]  Serafini, B., et al. (2007) Dysregu-lated Epstein Barr Virus infection in the Multiple Sclerosis Brain. Journal of Ex-perimental Medicine, 204, 2899-2912. https://pubmed.ncbi.nlm.nih.gov/17984305/
[36]  van Noort, J.M., Ba-jramovic, J.J., Plomp, A.C. and van Stipdonk, M.J.B. (2000) Mistaken Self, a Nov-el Model That Links Microbial Infections with Myelin-Directed Autoimmunity in Multiple Sclerosis. Journal of Neuroimmunology, 105, 46-57. https://doi.org/10.1016/s0165-5728(00)00181-8
[37]  Libbey, J.E., McCoy, L.L. and Fujinami, R.S. (2007) Molecular Mimicry in Multiple Sclerosis. In: In-ternational Review of Neurobiology, Elsevier, 127-147. https://doi.org/10.1016/s0074-7742(07)79006-2
[38]  Wucherpfennig, K.W. and Strominger, J.L. (1995) Molecular Mimicry in T Cell-Mediated Autoimmun-ity: Viral Peptides Activate Human T Cell Clones Specific for Myelin Basic Pro-tein. Cell, 80, 695-705. https://doi.org/10.1016/0092-8674(95)90348-8
[39]  Li, R., Rezk, A., Healy, L.M., Muirhead, G., Prat, A., Gommerman, J.L., et al. (2016) Cytokine-Defined B Cell Responses as Therapeutic Targets in Multiple Sclerosis. Frontiers in Immu-nology, 6, Article No. 626. https://doi.org/10.3389/fimmu.2015.00626
[40]  D’Addario, M., Libermann, T.A., Xu, J., Ahmad, A. and Menezes, J. (2001) Epstein-Barr Virus and Its Gly-coprotein-350 Upregulate IL-6 in Human B-Lymphocytes via CD21, Involving Activation of NF-κB and Different Signaling Pathways. Journal of Molecular Bi-ology, 308, 501-514. https://doi.org/10.1006/jmbi.2001.4589
[41]  Michel, L., Touil, H., Pikor, N.B., Gommerman, J.L., Prat, A. and Bar-Or, A. (2015) B Cells in the Multiple Sclerosis Central Nervous System: Trafficking and Contribution to CNS-Compartmentalized Inflammation. Frontiers in Immunology, 6, Article No. 636. https://doi.org/10.3389/fimmu.2015.00636
[42]  Hemminki, K., et al. (2009) Risk for Multiple Sclerosis in Relatives and Spouses of Patients Diag-nosed with Autoimmune and Related Conditions. Neurogenetics, 10, 5-11. https://pubmed.ncbi.nlm.nih.gov/18843511/
[43]  Zivadinov, Z., et al. (2018) Effect of Teriflunomide on Gray and White Matter Brain Pathology in Multiple Sclerosis Using Volumetric and Diffusion-Tensor Imaging MRI Measures. Journal of the Neurological Sciences, 388, 175-181. https://pubmed.ncbi.nlm.nih.gov/29627017/
[44]  Michelli, R., et al. (2015) Epstein Barr Virus Genetic Variants Are Associated with Multiple Sclerosis. Neurology, 84, 1362-1368. https://pubmed.ncbi.nlm.nih.gov/25740864/
[45]  Pender, M.P. and Bur-rows, S.R. (2014) Epstein-Barr Virus and Multiple Sclerosis: Potential Opportu-nities for Immunotherapy. Clinical & Translational Immunology, 3, e27. https://doi.org/10.1038/cti.2014.25
[46]  Friedman, J.E., et al. (2005) A Randomized Clinical Trial of Valacyclovir in Multiple Sclerosis. Multiple Sclerosis, 11, 286-295. https://pubmed.ncbi.nlm.nih.gov/15957509/
[47]  Belshe, R.B., et al. (2012) Efficacy Results of a Trial of a Herpes Simplex Vaccine. The New England Journal of Medicine, 366, 34-43. https://pubmed.ncbi.nlm.nih.gov/22216840/
[48]  Cohen, J.I. (2018) Vaccine Development for Epstein Barr Virus. Advances in Experimental Medicine and Biology, 1045, 477-493. https://pubmed.ncbi.nlm.nih.gov/29896681/
[49]  Balfour Jr., H.H., et al. (2020) The Promise of a Prophylactic Epstein Barr Virus Vaccine. Pediatric Re-search, 87, 345-352. https://pubmed.ncbi.nlm.nih.gov/31641280/
[50]  Steinman, L. (2004) Im-mune Therapy for Autoimmune Diseases. Science, 305, 212-216. https://pubmed.ncbi.nlm.nih.gov/15247472/
[51]  Comabella, M., et al. (2012) EBV-Specific Immune Responses in Patients with Multiple Sclerosis Re-sponding to IFNB Therapy. Multiple Sclerosis, 18, 605-609. https://pubmed.ncbi.nlm.nih.gov/22020417/
[52]  Scolding, N.J., et al. (2017) Cell-Based Therapeutic Strategies for Multiple Sclerosis. Brain, 140, 2776-2796. https://pubmed.ncbi.nlm.nih.gov/29053779/
[53]  Rizzo, F., Giacomini, E., Mechelli, R., Buscarinu, M.C., Salvetti, M., Severa, M., et al. (2016) Interferon-β Therapy Specifically Reduces Pathogenic Memory B Cells in Multi-ple Sclerosis Patients by Inducing a FAS-Mediated Apoptosis. Immunology & Cell Biology, 94, 886-894. https://doi.org/10.1038/icb.2016.55
[54]  Pender, M.P., et al. (2018) Epstein Barr Virus-Specific T Cell Therapy for Progressive Multiple Sclerosis. JCI Insight, 3, e124714. https://pubmed.ncbi.nlm.nih.gov/30429369/

Full-Text


Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133