全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Implementation of an Iterative Algorithm for the Construction of Incidence Matrices for Generalized Petri Nets

DOI: 10.4236/oalib.1111499, PP. 1-10

Subject Areas: Numerical Mathematics

Keywords: Petri Nets, Modelling, Iterative Algorithm, Incidence Matrix, Process

Full-Text   Cite this paper   Add to My Lib

Abstract

The implementation of automated systems that meet the desired functional specifications requires scientifically proven modelling and design tools. The achievement of an automated computing system that meets the set criteria and technical specifications depends on several factors. These include the accuracy  and the accuracy of the choice of modelling and design tools, the degree to which they are appropriate and adaptable to the application domain, the nature and setting of the application domain, the functional requirements and the available resources, to name but a few. This paper aims to extend the ontological basis of Petri nets by proposing an iterative algorithm for incidence matrix construction. The paper concludes with a discussion of the results focusing on the accuracy of the designed algorithm and its usability in the implementation of functional, reliable and robust automated systems.

Cite this paper

Niyongabo, E. , Ndikumagenge, J. , Elie, Z. M. and Nkunzimana, H. (2024). Implementation of an Iterative Algorithm for the Construction of Incidence Matrices for Generalized Petri Nets. Open Access Library Journal, 11, e1499. doi: http://dx.doi.org/10.4236/oalib.1111499.

References

[1]  Rivière, N. (2003) Modélisation et analyse temporelle par réseaux de Petri et logique linéaire. Doctoral Dissertation, INSA de Toulouse.
[2]  Peterson, J.L. (1981) Petri net theory and the modeling of systems. Prentice Hall PTR.
[3]  Bouali, M. (2009) Contributions à l’analyse formelle et au diagnostic à partir de réseaux de Petri colorés avec l’accessibilité arrière. Doctoral Dissertation, Université de Technologie de Compiègne.
[4]  Chen, H. (2018) Block Decompositions and Applica-tions of Generalized Reflexive Matrices. Advances in Linear Algebra & Matrix Theory, 8, 122-133. https://doi.org/10.4236/alamt.2018.83011
[5]  Sun, Y., Zhang, H. and Li, C. (2018) Generalized Irreducible Α-Matrices and Its Applications. Advances in Linear Algebra & Matrix Theory, 8, 111-121. https://doi.org/10.4236/alamt.2018.83010
[6]  Defour, D. (2003) Fonctions élémentaires: Algorithmes et implémenta-tions efficaces pour l’arrondi correct en double precision. Doctoral Dissertation, Ecole normale supérieure de lyon.
[7]  Parreaux, J. (2018-2019) Leçon 927: Exemples de preuves d’algorithmes: correction et terminaison.
[8]  Laskri, M.T. and Boudour, R. (2007) Outil de partitionnement hw/sw basé sur l’algorithme Kernighan/Lin amélioré. Revue Afri-caine de la Recherche en Informatique et Mathématiques Appliquées, 7, 20-40.
[9]  Van de Wiele, J.P. (1976) La com-plexité du calcul des polynômes.
[10]  Jguirim, W., Naanaa, W. and Cooper, M.C. (2015) Sur une classe polynomiale rela-tionnelle pour les CSP binaires.

Full-Text


Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133