This study investigated the effects of doping on the etching of SiO2 and in particular on the etched edge (parts). We have modelized and optimized using experimental data the etching rate of SiO2. The effects of temperature and oxide nature are factors taken into account in the modelization. The optimization of temperature permits to define the ideal temperature to be used in order to approach anisotropy and to permit repeatability to the etching process in industry. The modelization is applied on three types of silicon dioxide. It is applied on nondoped, n-doped and p-doped SiO2. The role of the work is to find a model using empirical relationships based on experimental results, to calculate the SiO2 etch rate depending on the type of doping, and temperature. The commented results are based on the segregation at Si/SiO2. We have developed a “theory” based on an empirical equation which modelizes the etch rate in non doped SiO2, to modelize it for those n-doped and p-doped. This “theory” stipulates that the etch rate in doped SiO2 can be predicted by knowing the etch rate in nondoped one. Thus, we have extracted an entity what we called "segregation proportionality", proportional to the diffusion-segregation boron and phosphorus distributions in the silicon dioxide-silicon, and which can be physically and chemically explained.
Cite this paper
Bouabdallah, B. , Bourezig, Y. , Nabi, Z. , Kheris, S. , Benichou, B. and Benhelal, O. (2014). The Modelization of the Wet Etching Rate by the Segregation Boron and Phosphorus Distributions in Si/SiO2. Open Access Library Journal, 1, e637. doi: http://dx.doi.org/10.4236/oalib.1100637.
Parisi, G.I., Haszko, S.E. and Rozgonyi, G.A. (1977) Tapered Windows in SiO2: The Effect of ?NH4F:HF? Dilution and Etching Temperature. Journal of the Electrochemical Society, 124, 917-921. http://dx.doi.org/10.1149/1.2133453
Judge, J.S. (1971) A Study of the Dissolution of SiO2 in Acidic Fluoride Solutions. Journal of the Electrochemical Society: Solid State Science, 118, 1772-1775. http://dx.doi.org/10.1149/1.2407835
Peignon, M.C., Clénet, F. and Turban, G. (1996) Contact Etching Process Characterization by Using Angular X-Ray Photoelectron Spectroscopy Technique. Journal of the Electrochemical Society, 143, 1347-1354. http://dx.doi.org/10.1149/1.1836641
Vesna, J., Jelena, L., Mirjana, P. and Zarko, L. (2007) Fabrication of SiO2-Based Microcantilevers by Anisotropic Chemical Etching of (100) Single Crystal Si. Journal of the Serbian Chemical Society, 72, 1127-1138. http://dx.doi.org/10.2298/JSC0711127J
Spierings, G.A.C.M. (1993) Wet Chemical Etching of Silicate Glasses in Hydroflorid Acid Based Solutions. Jounrnal of Materials Science, 28, 6261-6273. http://dx.doi.org/10.1007/BF01352182
Spierings, G.A.C.M. (1991) Compositional Effects in the Dissolution of Multicomponent Silicate Glasses in Aqueous HF Solutions. Jounrnal of Materials Science, 26, 3329-3336. http://dx.doi.org/10.1007/BF01124681
Kikuyama, H., Waki, M., Kawanabe, I., Miyashita, M., Yabune, T., Miki, N., Takano, J. and Ohmi, T. (1992) Etching Rate and Mechanism of Doped Oxide in Buffered Hydrogen Fluoride Solution. Journal of the Electrochemical Society, 139, 2239-2243. http://dx.doi.org/10.1149/1.2221208
Kunii, Y., Nakayama, S. and Maeda, M. (1995) Wet Etching of Doped and Nondoped Silicon Oxide Films Using Buffered Hydrogen Floride Solutions. Journal of the Electrochemical Society, 142, 3510-3513. http://dx.doi.org/10.1149/1.2050013
Passi, V., Sodervall, U., Nilsson, B., Petersson, G., Hagberg, M., Krzeminski, C., Dubois, E., Du Bois, B. and Raskin, J.P. (2012) Anisotropic Vapor HF Etching of Silicon Dioxide for Si Microstructure Release. Microelectronic Engineering, 95, 83-89. http://dx.doi.org/10.1016/j.mee.2012.01.005
Aleksandrov, O.V. and Afonin, N.N. (2003) Effect of Oxidizing Environments on the Diffusion-Segregation Boron Distribution in the Thermal Silicon Dioxide-Silicon System. Technical Physics, 48, 580-586. http://dx.doi.org/10.1134/1.1576471
Grove, A.S., Leistiko, O. and Sah, C.T. (1964) Redistribution of Acceptor and Donor Impurities during Thermal Oxidation of Silicon. Journal of Applied Physics, 35, 2695-2701. http://dx.doi.org/10.1063/1.1713825
Anand, K.V., McKell, H.D. and Northrop, D.C. (1971) The Properties of Silicon Dioxide Films on Silicon as Diffusion Masks for Boron. Journal of Physics D: Applied Physics, 4, 1722-1730. http://dx.doi.org/10.1088/0022-3727/4/11/316